cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324385 Distance from the n-th highly composite number, A002182(n), from the largest prime <= A002182(n).

Original entry on oeis.org

0, 1, 1, 1, 1, 5, 1, 1, 7, 1, 1, 1, 1, 1, 1, 11, 17, 1, 1, 1, 13, 11, 11, 19, 17, 13, 1, 23, 1, 1, 13, 17, 17, 13, 17, 1, 17, 1, 1, 23, 17, 17, 17, 1, 19, 83, 37, 23, 17, 23, 1, 43, 19, 1, 19, 43, 19, 31, 23, 19, 31, 19, 19, 1, 1, 1, 1, 47, 1, 31, 47, 23, 53, 23, 83, 37, 31, 1, 31, 1, 23, 61, 1, 41, 47, 61, 41, 29, 41, 29, 43, 73, 29, 47, 31, 31
Offset: 2

Views

Author

Antti Karttunen, Feb 26 2019

Keywords

Comments

Like in A141345 it appears (or is conjectured) that no composite numbers ever occur here. Taken together, this leads to McEachen's conjecture given in A117825. Here in range 2..10000 term 1 occurs for 313 times.
The arithmetic mean of a(n)/log(A002182(n)) for the terms 3..10000 is 1.513, i.e., a rough approximation is given by a(n) ~ log(A002182(n)^(3/2)). - A.H.M. Smeets, Dec 02 2020

Examples

			A002182(2) = 2, the largest prime <= 2 is 2 itself, thus a(2) = 2-2 = 0.
A002182(7) = 36, the largest prime <= 36 is 31, thus a(7) = 36-31 = 5.
		

Crossrefs

Programs

  • Mathematica
    With[{s = Array[DivisorSigma[0, #] &, 10^6]}, {0}~Join~Map[# - NextPrime[#, -1] &@ FirstPosition[s, #][[1]] &, Drop[Union@ FoldList[Max, s], 2]]] (* or *)
    {0}~Join~Map[# - NextPrime[#, -1] &, Import["https://oeis.org/A002182/b002182.txt", "Data"][[3 ;; 97, -1]] ] (* Michael De Vlieger, Dec 11 2020 *)
  • PARI
    A324385(n) = (A002182(n)-precprime(A002182(n)));

Formula

a(n) = A002182(n) - A007917(A002182(n)).