cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324401 Lexicographically earliest sequence such that a(i) = a(j) => f(i) = f(j) for all i, j >= 1, where f(n) = -1 if n is an odd prime, f(n) = -2 if n = 2^k, with k > 1, and f(n) = n for all other numbers.

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 3, 4, 6, 7, 3, 8, 3, 9, 10, 4, 3, 11, 3, 12, 13, 14, 3, 15, 16, 17, 18, 19, 3, 20, 3, 4, 21, 22, 23, 24, 3, 25, 26, 27, 3, 28, 3, 29, 30, 31, 3, 32, 33, 34, 35, 36, 3, 37, 38, 39, 40, 41, 3, 42, 3, 43, 44, 4, 45, 46, 3, 47, 48, 49, 3, 50, 3, 51, 52, 53, 54, 55, 3, 56, 57, 58, 3, 59, 60, 61, 62, 63, 3, 64, 65, 66, 67, 68, 69, 70, 3, 71, 72, 73, 3, 74, 3, 75, 76
Offset: 1

Views

Author

Antti Karttunen, Mar 01 2019

Keywords

Comments

For all i, j:
A305801(i) = A305801(j) => a(i) = a(j),
a(i) = a(j) => A305976(i) = A305976(j) => A001221(i) = A001221(j),
a(i) = a(j) => A322591(i) = A322591(j),
a(i) = a(j) => A323235(i) = A323235(j),
a(i) = a(j) => A324399(i) = A324399(j),
a(i) = a(j) => A297159(i) = A297159(j).

Crossrefs

Programs

  • PARI
    A000523(n) = if(n<1, 0, #binary(n)-1);
    A324401(n) = if(n<4,n,if(isprime(n),3,if(!bitand(n,n-1),4,4+n-A000523(n)-primepi(n))));
    
  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    Aux324401(n) = if((n>2) && (isprime(n)||!bitand(n,n-1)),-(2-(n%2)),n);
    \\ Equally: Aux324401(n) = if(n<=2,n,if(isprime(n),-1,if(!bitand(n,n-1),-2,n)));
    v324401 = rgs_transform(vector(up_to, n, Aux324401(n)));
    A324401(n) = v324401[n];

Formula

If n <= 2, a(n) = n, for n > 2, if n is an odd prime, a(n) = 3, if n = 2^k, with k >= 2, a(n) = 4, otherwise a(n) = 4 + n - A000523(n) - A000720(n).