A324437 a(n) = Product_{i=1..n, j=1..n} (i^4 + j^4).
1, 2, 18496, 189567553208832, 53863903330477722171391434817536, 4194051697335929481600368256016484482740174637152337920000, 530545265060440849231458462212366841894726534233233018777709463062563850450708386692464640000
Offset: 0
Keywords
Crossrefs
Programs
-
Maple
a:= n-> mul(mul(i^4+j^4, i=1..n), j=1..n): seq(a(n), n=0..7); # Alois P. Heinz, Jun 24 2023
-
Mathematica
Table[Product[i^4 + j^4, {i, 1, n}, {j, 1, n}], {n, 1, 6}]
-
Python
from math import prod, factorial def A324437(n): return (prod(i**4+j**4 for i in range(1,n) for j in range(i+1,n+1))*factorial(n)**2)**2<
Chai Wah Wu, Nov 26 2023
Formula
a(n) ~ c * 2^(n*(n+1)) * exp(Pi*n*(n+1)/sqrt(2) - 6*n^2) * (1 + sqrt(2))^(sqrt(2)*n*(n+1)) * n^(4*n^2 - 1), where c = A306620 = 0.23451584451404279281807143317500518660696293944961...
For n>0, a(n)/a(n-1) = A272247(n)^2 / (2*n^12). - Vaclav Kotesovec, Dec 01 2023
Extensions
a(0)=1 prepended by Alois P. Heinz, Jun 24 2023