cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A306594 a(n) = Product_{i=1..n, j=1..n, k=1..n} (i + j + k).

Original entry on oeis.org

1, 3, 144000, 455282248974336000000, 9608917807566747651759509633033255126040576000000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 27 2019

Keywords

Comments

Next term is too long to be included.

Crossrefs

Programs

  • Maple
    a:= n-> mul(mul(mul(i+j+k, i=1..n), j=1..n), k=1..n):
    seq(a(n), n=0..5);  # Alois P. Heinz, Jun 24 2023
  • Mathematica
    Table[Product[i+j+k, {i, 1, n}, {j, 1, n}, {k, 1, n}], {n, 1, 6}]
    Table[Product[k^(3*(n - k + 1) (n - k + 2)/2), {k, 1, n}] * Product[k^((3*n - k + 1) (3*n - k + 2)/2), {k, 1, 3*n}] / Product[k^(3*(2*n - k + 1) (2*n - k + 2)/2), {k, 1, 2*n}], {n, 1, 6}]
    Clear[a]; a[n_] := a[n] = If[n == 1, 3, 3*n*a[n-1] * BarnesG[2+n]^3 * BarnesG[2+3*n]^3 * Gamma[1+2*n]^3 / (BarnesG[2+2*n]^6 * Gamma[1+3*n]^3)]; Table[a[n], {n, 1, 6}] (* Vaclav Kotesovec, Mar 28 2019 *)

Formula

a(n) = Product_{k=1..n} (BarnesG(k+2) * BarnesG(2*n+k+2) / BarnesG(n+k+2)^2).
a(n) = Product_{k=1..n} (k^(3*(n - k + 1)*(n - k + 2)/2)) * Product_{k=1..3*n} (k^((3*n - k + 1)*(3*n - k + 2)/2)) / Product_{k=1..2*n} (k^(3*(2*n - k + 1)*(2*n - k + 2)/2)).
a(n) ~ sqrt(Pi) * 3^(9*n^3/2 + 27*n^2/4 + 3*n + 3/8) * n^(n^3 + 3/8) / (A^(3/2) * 2^(4*n^3 + 9*n^2 + 6*n + 5/8) * exp(11*n^3/6 - Zeta(3)/(8*Pi^2) - 1/8)), where A is the Glaisher-Kinkelin constant A074962.

Extensions

a(0)=1 prepended by Alois P. Heinz, Jun 24 2023

A368807 a(n) = Product_{k1=1..k2, k2=1..k3, k3=1..k4, k4=1..n} (k1 + k2 + k3 + k4).

Original entry on oeis.org

1, 4, 6720, 19313344512000, 20823306760116073109787770880000000, 127561365195629861072526583814017987280486114546255888016998400000000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 06 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[Product[Product[Product[k1 + k2 + k3 + k4, {k1, 1, k2}], {k2, 1, k3}], {k3, 1, k4}], {k4, 1, n}], {n, 0, 8}]

Formula

Limit_{n->oo} (a(n)^(1/n^4)) / n^(1/24) = 2^(19/18) / (3^(9/16) * exp(25/288)) = 1.0272449259573526742294526185907726081185052788527643...
Showing 1-2 of 2 results.