A324458 Numbers m > 1 such that every prime divisor p of m satisfies s_p(m) = p.
45, 325, 405, 637, 891, 1729, 2821, 3751, 4961, 6517, 7381, 8125, 8281, 10625, 13357, 21141, 26353, 28033, 29341, 31213, 33125, 35443, 46657, 47081, 58621, 65341, 74431, 78625, 81289, 94501, 98125, 99937, 123823, 146461, 231601, 236321, 252601, 254221, 294409
Offset: 1
Examples
The number 45 has the prime factors 3 and 5. Since s_3(45) = 3 and s_5(45) = 5, 45 is a member.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..1000 (terms 1..117 from Bernd C. Kellner)
- Bernd C. Kellner, On primary Carmichael numbers, Integers 22 (2022), Article #A38, 39 pp.; arXiv:1902.11283 [math.NT], 2019.
- Bernd C. Kellner and Jonathan Sondow, On Carmichael and polygonal numbers, Bernoulli polynomials, and sums of base-p digits, Integers 21 (2021), Article #A52, 21 pp.; arXiv:1902.10672 [math.NT], 2019.
Crossrefs
Programs
-
Mathematica
s[n_, p_] := If[n < 1 || p < 2, 0, Plus @@ IntegerDigits[n, p]]; f[n_] := AllTrue[Transpose[FactorInteger[n]][[1]], s[n, #] == # &]; Select[Range[10^7], f[#] &]
Comments