A324459 Numbers m > 1 that have an s-decomposition.
24, 45, 48, 72, 96, 120, 144, 189, 192, 216, 224, 225, 231, 240, 280, 288, 315, 320, 325, 336, 352, 360, 378, 384, 405, 432, 450, 480, 525, 540, 560, 561, 567, 576, 594, 600, 637, 640, 648, 672, 704, 720, 768, 792, 819, 825, 832, 850, 864, 891, 896, 924, 945
Offset: 1
Examples
Since 225 = 5^2 * 9 with s_5(225) = 5 and s_9(225) = 9, 225 is a member.
Links
- Bernd C. Kellner, Table of n, a(n) for n = 1..532
- Bernd C. Kellner, On primary Carmichael numbers, Integers 22 (2022), Article #A38, 39 pp.; arXiv:1902.11283 [math.NT], 2019.
Programs
-
Mathematica
s[n_, g_] := If[n < 1 || g < 2, 0, Plus @@ IntegerDigits[n, g]]; HasDecomp[m_] := Module[{E0, EV, G, R, k, n, v}, If[m < 1 || !CompositeQ[m], Return[False]]; G = Select[Divisors[m], s[m, #] >= # &]; n = Length[G]; If[n < 2, Return[False]]; E0 = Array[0 &, n]; EV = Array[v, n]; R = Solve[Product[G[[k]]^EV[[k]], {k, 1, n}] == m && EV >= E0, EV, Integers]; Return[R != {}]]; Select[Range[10^3], HasDecomp[#] &]
Comments