A324463 Number of graphical necklaces covering n vertices.
1, 0, 1, 2, 15, 156, 4665, 269618, 31573327, 7375159140, 3450904512841, 3240500443884718, 6113078165054644451, 23175001880311842459108, 176546824267008236554238517, 2701847513793569606737940203894, 83036203475880811677609125194805687
Offset: 0
Keywords
Examples
Inequivalent representatives of the a(2) = 1 through a(4) = 15 graphical necklaces: {{12}} {{12}{13}} {{12}{34}} {{12}{13}{23}} {{13}{24}} {{12}{13}{14}} {{12}{13}{24}} {{12}{13}{34}} {{12}{14}{23}} {{12}{24}{34}} {{12}{13}{14}{23}} {{12}{13}{14}{24}} {{12}{13}{14}{34}} {{12}{13}{24}{34}} {{12}{14}{23}{34}} {{12}{13}{14}{23}{24}} {{12}{13}{14}{23}{34}} {{12}{13}{14}{23}{24}{34}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..50
- Gus Wiseman, The a(4) = 15 covering graphical necklaces, radial embedding.
- Gus Wiseman, The a(5) = 156 covering graphical necklaces.
Crossrefs
Programs
-
Mathematica
rotgra[g_,m_]:=Sort[Sort/@(g/.k_Integer:>If[k==m,1,k+1])]; Table[Length[Select[Subsets[Subsets[Range[n],{2}]],And[Union@@#==Range[n],#=={}||#==First[Sort[Table[Nest[rotgra[#,n]&,#,j],{j,n}]]]]&]],{n,0,5}]
-
PARI
a(n)={if(n<1, n==0, sumdiv(n, d, eulerphi(n/d)*sum(k=0, d, (-1)^(d-k)*binomial(d,k)*2^(k*(k-1)*n/(2*d) + k*(n/d\2))))/n)} \\ Andrew Howroyd, Aug 19 2019
Formula
a(n) = (1/n)*Sum{d|n} phi(n/d) * Sum_{k=0..d} (-1)^(d-k)*binomial(d,k)*2^( k*(k-1)*n/(2*d) + k*(floor(n/(2*d))) ). - Andrew Howroyd, Aug 19 2019
Extensions
Terms a(7) and beyond from Andrew Howroyd, Aug 19 2019
Comments