A324464 Number of connected graphical necklaces with n vertices.
1, 0, 1, 2, 13, 148, 4530, 266614, 31451264, 7366255436, 3449652145180, 3240150686268514, 6112883022923529310, 23174784819204929919428, 176546343645071836902594288, 2701845395848698682311893154024, 83036184895986451215378727412638816, 5122922885438069578928905234650082410736
Offset: 0
Keywords
Examples
Inequivalent representatives of the a(2) = 1 through a(4) = 13 graphical necklaces: {{12}} {{12}{13}} {{12}{13}{14}} {{12}{13}{23}} {{12}{13}{24}} {{12}{13}{34}} {{12}{14}{23}} {{12}{24}{34}} {{12}{13}{14}{23}} {{12}{13}{14}{24}} {{12}{13}{14}{34}} {{12}{13}{24}{34}} {{12}{14}{23}{34}} {{12}{13}{14}{23}{24}} {{12}{13}{14}{23}{34}} {{12}{13}{14}{23}{24}{34}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..50
- Gus Wiseman, The a(4) = 13 connected graphical necklaces.
- Gus Wiseman, The a(5) = 148 connected graphical necklaces.
Crossrefs
Programs
-
Mathematica
rotgra[g_,m_]:=Sort[Sort/@(g/.k_Integer:>If[k==m,1,k+1])]; csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; Table[Length[Select[Subsets[Subsets[Range[n],{2}]],And[Union@@#==Range[n],Length[csm[#]]<=1,#=={}||#==First[Sort[Table[Nest[rotgra[#,n]&,#,j],{j,n}]]]]&]],{n,0,5}]
-
PARI
\\ B(n,d) is graphs on n*d points invariant under 1/d rotation. B(n,d)={2^(n*(n-1)*d/2 + n*(d\2))} D(n,d)={my(v=vector(n, i, B(i,d)), u=vector(n)); for(n=1, #u, u[n]=v[n] - sum(k=1, n-1, binomial(n-1, k)*v[k]*u[n-k])); sumdiv(n, e, eulerphi(d*e) * moebius(e) * u[n/e] * e^(n/e-1))} a(n)={if(n<=1, n==0, sumdiv(n, d, D(n/d,d))/n)} \\ Andrew Howroyd, Jan 24 2023
Extensions
Terms a(7) and beyond from Andrew Howroyd, Jan 24 2023
Comments