A324512 Number of aperiodic n-gons.
1, 0, 0, 0, 10, 42, 357, 2400, 20142, 180280, 1814395, 19944804, 239500794, 3113326062, 43589143560, 653834280960, 10461394943992, 177843662409312, 3201186852863991, 60822549182544440, 1216451004087794832, 25545471063559372750, 562000363888803839989
Offset: 1
Keywords
Examples
The a(5) = 10 aperiodic polygon edge sets: {{1,2},{1,3},{2,4},{3,5},{4,5}} {{1,2},{1,3},{2,5},{3,4},{4,5}} {{1,2},{1,4},{2,3},{3,5},{4,5}} {{1,2},{1,4},{2,5},{3,4},{3,5}} {{1,2},{1,5},{2,4},{3,4},{3,5}} {{1,3},{1,4},{2,3},{2,5},{4,5}} {{1,3},{1,5},{2,3},{2,4},{4,5}} {{1,3},{1,5},{2,4},{2,5},{3,4}} {{1,4},{1,5},{2,3},{2,4},{3,5}} {{1,4},{1,5},{2,3},{2,5},{3,4}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
- Gus Wiseman, The a(5) = 10 aperiodic polygons.
- Gus Wiseman, The a(6) = 42 aperiodic polygons.
Crossrefs
Programs
-
Mathematica
rotgra[g_,m_]:=Sort[Sort/@(g/.k_Integer:>If[k==m,1,k+1])]; Table[Length[Select[Union[Sort[Sort/@Partition[#,2,1,1]]&/@Permutations[Range[n]]],UnsameQ@@Table[Nest[rotgra[#,n]&,#,j],{j,n}]&]],{n,8}]
-
PARI
a(n)={if(n<3, n==1, (if(n%2, 0, -n*(n/2-1)!*2^(n/2-2)) + sumdiv(n, d, moebius(n/d)*eulerphi(n/d)*(n/d)^d*d!/n))/2)} \\ Andrew Howroyd, Aug 19 2019
Formula
a(n) = n * A324513(n).
Extensions
Terms a(10) and beyond from Andrew Howroyd, Aug 19 2019
Comments