A324515 Numbers > 1 where the maximum prime index minus the minimum prime index equals the number of prime factors minus the number of distinct prime factors.
2, 3, 5, 7, 11, 12, 13, 17, 18, 19, 23, 29, 31, 37, 40, 41, 43, 45, 47, 53, 59, 61, 67, 71, 73, 75, 79, 83, 89, 97, 100, 101, 103, 107, 109, 112, 113, 120, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 175, 179, 180, 181, 189, 191, 193, 197, 199, 211, 223
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 2: {1} 3: {2} 5: {3} 7: {4} 11: {5} 12: {1,1,2} 13: {6} 17: {7} 18: {1,2,2} 19: {8} 23: {9} 29: {10} 31: {11} 37: {12} 40: {1,1,1,3} 41: {13} 43: {14} 45: {2,2,3}
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
filter:= proc(n) local F, Inds, t; if isprime(n) then return true fi; F:= ifactors(n)[2]; Inds:= map(numtheory:-pi, F[..,1]); max(Inds) - min(Inds) = add(t[2],t=F) - nops(F) end proc: select(filter, [$2..300]); # Robert Israel, Nov 19 2023
-
Mathematica
Select[Range[2,100],With[{f=FactorInteger[#]},PrimePi[f[[-1,1]]]-PrimePi[f[[1,1]]]==Total[Last/@f]-Length[f]]&]
Comments