cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324517 Numbers > 1 where the maximum prime index equals the number of prime factors minus the number of distinct prime factors.

Original entry on oeis.org

4, 24, 27, 36, 54, 80, 200, 224, 240, 360, 405, 500, 540, 600, 625, 672, 675, 704, 784, 810, 900, 1008, 1120, 1125, 1250, 1350, 1500, 1512, 1664, 1701, 1875, 2112, 2250, 2268, 2352, 2744, 2800, 3168, 3360, 3402, 3520, 3528, 3750, 3872, 3920, 3969, 4352, 4752
Offset: 1

Views

Author

Gus Wiseman, Mar 06 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also Heinz numbers of the integer partitions enumerated by A324518. The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
    4: {1,1}
   24: {1,1,1,2}
   27: {2,2,2}
   36: {1,1,2,2}
   54: {1,2,2,2}
   80: {1,1,1,1,3}
  200: {1,1,1,3,3}
  224: {1,1,1,1,1,4}
  240: {1,1,1,1,2,3}
  360: {1,1,1,2,2,3}
  405: {2,2,2,2,3}
  500: {1,1,3,3,3}
  540: {1,1,2,2,2,3}
  600: {1,1,1,2,3,3}
  625: {3,3,3,3}
  672: {1,1,1,1,1,2,4}
  675: {2,2,2,3,3}
  704: {1,1,1,1,1,1,5}
  784: {1,1,1,1,4,4}
  810: {1,2,2,2,2,3}
  900: {1,1,2,2,3,3}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2,1000],With[{f=FactorInteger[#]},PrimePi[f[[-1,1]]]==Total[Last/@f]-Length[f]]&]

Formula

A061395(a(n)) = A001222(a(n)) - A001221(a(n)) = A046660(a(n)).