A324525 Numbers divisible by prime(k)^k for each prime index k.
1, 2, 4, 8, 9, 16, 18, 27, 32, 36, 54, 64, 72, 81, 108, 125, 128, 144, 162, 216, 243, 250, 256, 288, 324, 432, 486, 500, 512, 576, 625, 648, 729, 864, 972, 1000, 1024, 1125, 1152, 1250, 1296, 1458, 1728, 1944, 2000, 2048, 2187, 2250, 2304, 2401, 2500, 2592
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins as follows. For example, 36 = prime(1) * prime(1) * prime(2) * prime(2) is a term because the prime multiplicities are {2,2}, which are greater than or equal to the prime indices {1,2}. 1: {} 2: {1} 4: {1,1} 8: {1,1,1} 9: {2,2} 16: {1,1,1,1} 18: {1,2,2} 27: {2,2,2} 32: {1,1,1,1,1} 36: {1,1,2,2} 54: {1,2,2,2} 64: {1,1,1,1,1,1} 72: {1,1,1,2,2} 81: {2,2,2,2} 108: {1,1,2,2,2} 125: {3,3,3} 128: {1,1,1,1,1,1,1}
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
q:= n-> andmap(i-> i[2]>=numtheory[pi](i[1]), ifactors(n)[2]): select(q, [$1..3000])[]; # Alois P. Heinz, Mar 08 2019
-
Mathematica
Select[Range[1000],And@@Cases[If[#==1,{},FactorInteger[#]],{p_,k_}:>k>=PrimePi[p]]&] seq[max_] := Module[{ps = {2}, p, s = {1}, s1, s2, emax}, While[ps[[-1]]^Length[ps] < max, AppendTo[ps, NextPrime[ps[[-1]]]]]; Do[p = ps[[k]]; emax = Floor[Log[p, max]]; s1 = Join[{1}, p^Range[k, emax]]; s2 = Select[Union[Flatten[Outer[Times, s, s1]]], # <= max &]; s = Union[s, s2], {k, 1, Length[ps]}]; s]; seq[3000] (* Amiram Eldar, Nov 23 2020 *)
Formula
Closed under multiplication.
Sum_{n>=1} 1/a(n) = Product_{k>=1} 1 + 1/(prime(k)^(k-1) * (prime(k)-1)) = 2.35782843100111139159... - Amiram Eldar, Nov 23 2020
Comments