cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A324537 a(n) = A003557(k), where k = Product_{d|n, d>2} prime(A297167(d)).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 4, 1, 5, 3, 1, 1, 6, 1, 3, 5, 7, 1, 12, 1, 11, 1, 5, 1, 54, 1, 1, 7, 13, 5, 36, 1, 17, 11, 9, 1, 250, 1, 7, 9, 19, 1, 60, 1, 15, 13, 11, 1, 30, 7, 5, 17, 23, 1, 1620, 1, 29, 5, 1, 11, 686, 1, 13, 19, 375, 1, 540, 1, 31, 15, 17, 7, 2662, 1, 45, 1, 37, 1, 3500, 13, 41, 23, 7, 1, 2430, 11, 19, 29, 43, 17, 420, 1, 35, 7, 75, 1
Offset: 1

Views

Author

Antti Karttunen, Mar 07 2019

Keywords

Crossrefs

Cf. A000961 (positions of ones), A003557, A297167, A300827, A324191, A324193, A324202, A324538.

Programs

  • PARI
    A061395(n) = if(1==n, 0, primepi(vecmax(factor(n)[, 1])));
    A297167(n) = if(1==n, 0, (A061395(n) + (bigomega(n)-omega(n)) - 1));
    A003557(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 2] = f[i, 2]-1); factorback(f); }; \\ From A003557
    A324537(n) = { my(m=1); fordiv(n, d, if(d>2, m *= prime(A297167(d)))); A003557(m); };

Formula

A001222(a(n)) = A324191(n) - 1.

A332827 Lexicographically earliest infinite sequence such that a(i) = a(j) => f(i) = f(j), where f(n) = A003557(A332824(n)) for all other numbers, except f(1) = 0.

Original entry on oeis.org

1, 2, 3, 2, 3, 4, 3, 2, 5, 6, 3, 7, 3, 8, 3, 2, 3, 9, 3, 6, 10, 11, 3, 12, 13, 14, 15, 16, 3, 17, 3, 2, 5, 18, 13, 19, 3, 20, 21, 22, 3, 23, 3, 24, 25, 26, 3, 27, 5, 28, 3, 29, 3, 30, 21, 31, 5, 32, 3, 33, 3, 34, 35, 2, 13, 36, 3, 18, 10, 37, 3, 38, 3, 39, 40, 41, 25, 42, 3, 43, 44, 45, 3, 46, 3, 47, 48, 49, 3, 50, 40, 51, 52, 53, 3, 54, 3, 55, 56, 57, 3, 58, 3, 59, 60
Offset: 1

Views

Author

Antti Karttunen, Feb 25 2020

Keywords

Comments

For all i, j:
A305801(i) = A305801(j) => a(i) = a(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ From A019565
    A332824(n) = { my(m=1); fordiv(n,d,m *= A019565(eulerphi(d))); (m); };
    A003557(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 2] = f[i, 2]-1); factorback(f); };
    Aux332827(n) = if(1==n,0,A003557(A332824(n)));
    v332827 = rgs_transform(vector(up_to,n,Aux332827(n)));
    A332827(n) = v332827[n];
Showing 1-2 of 2 results.