cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A327153 Number of divisors d of n such that sigma(d)*d is equal to n.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1
Offset: 1

Views

Author

Antti Karttunen, Sep 18 2019

Keywords

Comments

a(n) tells how many times in total n occurs in A064987.

Examples

			336 has 20 divisors: [1, 2, 3, 4, 6, 7, 8, 12, 14, 16, 21, 24, 28, 42, 48, 56, 84, 112, 168, 336]. Only two of them, d=12 and d=14, satisfy sigma(d) = (336/d), thus a(336) = 2.
		

Crossrefs

Cf. A000203, A064987, A327165 (positions of nonzero terms).
Cf. also A324539.

Programs

  • PARI
    A327153(n) = sumdiv(n, d, (n==d*sigma(d)));

Formula

a(n) = Sum_{d|n} [A000203(d)*d == n], where [ ] is the Iverson bracket.

A355944 a(n) = smallest positive k such that n divides k*A276086(k), where A276086 is primorial base exp-function.

Original entry on oeis.org

1, 1, 2, 4, 5, 2, 7, 8, 3, 5, 11, 4, 13, 7, 5, 16, 17, 3, 19, 8, 14, 11, 23, 8, 10, 13, 9, 28, 29, 5, 31, 32, 11, 17, 7, 4, 37, 19, 26, 8, 41, 14, 43, 44, 5, 23, 47, 16, 35, 10, 17, 52, 53, 9, 11, 32, 38, 29, 59, 8, 61, 31, 21, 64, 13, 11, 67, 68, 23, 7, 71, 16, 73, 37, 10, 76, 33, 26, 79, 16, 27, 41, 83, 28, 17, 43
Offset: 1

Views

Author

Antti Karttunen, Jul 27 2022

Keywords

Comments

a(n) is the smallest positive k such that A324580(k) is a multiple of n.

Crossrefs

Cf. A276086, A324539, A324540, A324541, A324580, A355945, A356151, A356152, A356153, A356160 (fixed points, where a(n)=n), A356161.
Cf. also A344005, A356164.

Programs

  • PARI
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A355944(n) = for(k=1, oo, if((k*A276086(k))%n==0, return(k)));

Formula

a(n) = n - A355945(n).

A324540 Numbers not in range of A324580.

Original entry on oeis.org

1, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91
Offset: 1

Views

Author

Antti Karttunen, Mar 10 2019

Keywords

Comments

Positions of zeros in A324539.

Crossrefs

Cf. A324541 (complement).
Cf. A276086, A324539, A324580, A065091 (a subsequence).

Programs

  • PARI
    A276086(n) = { my(i=0,m=1,pr=1,nextpr); while((n>0),i=i+1; nextpr = prime(i)*pr; if((n%nextpr),m*=(prime(i)^((n%nextpr)/pr));n-=(n%nextpr));pr=nextpr); m; };
    A324539(n) = sumdiv(n,d,(d==A276086(n/d)));
    for(n=1,100,if(0==A324539(n), print1(n, ", ")));
    
  • PARI
    search_limit = 15000;
    A324580(n) = n*A276086(n);
    A324540list(search_up_to) = { my(v=vector(search_up_to),c=0,k); for(n=1,#v,k=A324580(n); if(k<=#v && !v[k], v[k] = n; c++)); my(u=vector(#v-c), j=0); for(n=1,#v,if(0==v[n], j++; u[j] = n)); (u); };
    v324540 = A324540list(search_limit);
    A324540(n) = v324540[n];

A324541 Numbers that occur in range of A324580.

Original entry on oeis.org

0, 2, 6, 18, 30, 36, 70, 90, 120, 210, 270, 300, 434, 450, 650, 672, 990, 1050, 1260, 1386, 2142, 2250, 2310, 2590, 2940, 3600, 3990, 4410, 4642, 4750, 5978, 6996, 7350, 7500, 7650, 8190, 9114, 11880, 12600, 14058, 15000, 15050, 15750, 16170, 18480, 18522, 21186, 23100, 23870, 24750, 25830, 28224, 30030, 30870, 31250, 32830, 35970, 37114, 42000
Offset: 0

Views

Author

Antti Karttunen, Mar 10 2019

Keywords

Comments

Indexing begins from 0 because the term a(0) = 0 is a special case.
Sequence A324580 sorted into ascending order, with duplicate occurrences removed. The first such duplicate is 2250 = A324580(15) = 150*15 = A324580(18) = 125*18. The next is 5402250 = A324580(105) = A276086(105)*105 = A324580(125) = A276086(125)*125.
Terms after zero are the positions of nonzero terms in A324539.

Crossrefs

Cf. A324540 (complement).
Cf. A002110 (a subsequence), A276086, A324539, A324579, A324580.

Programs

  • PARI
    A276086(n) = { my(i=0,m=1,pr=1,nextpr); while((n>0),i=i+1; nextpr = prime(i)*pr; if((n%nextpr),m*=(prime(i)^((n%nextpr)/pr));n-=(n%nextpr));pr=nextpr); m; };
    A324539(n) = sumdiv(n,d,(d==A276086(n/d)));
    for(n=1,oo,if(A324539(n)>0, print1(n, ", "))); \\ Print terms after zero.
    
  • PARI
    \\ This program is better for computing many terms:
    search_limit = 9699690;
    A324580(n) = n*A276086(n);
    A324541list(lim) = { my(s=Set([]),k); for(n=1,lim, k=A324580(n); if(k<=lim, s = setunion([k], s))); Vec(s); };
    v324541 = A324541list(search_limit);
    A324541(n) = if(!n,n,v324541[n]);
Showing 1-4 of 4 results.