A324543 Möbius transform of A323243, where A323243(n) = sigma(A156552(n)).
0, 1, 3, 3, 7, 2, 15, 4, 9, 5, 31, 3, 63, 2, 8, 16, 127, -1, 255, 4, 21, 16, 511, 8, 21, 20, 12, 27, 1023, 6, 2047, 8, 20, 48, 20, 20, 4095, 2, 78, 32, 8191, -6, 16383, 17, 9, 288, 32767, 8, 45, -3, 122, 45, 65535, 4, 53, 20, 270, 278, 131071, 2, 262143, 688, 12, 72, 56, 23, 524287, 125, 260, -8, 1048575, 20, 2097151, 260, 3, 363, 44, -7, 4194303
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000 (based on Hans Havermann's factorization of A156552)
- Index entries for sequences computed from indices in prime factorization
- Index entries for sequences related to sigma(n)
Crossrefs
Programs
-
Mathematica
Table[DivisorSum[n, MoebiusMu[n/#] If[# == 1, 0, DivisorSigma[1, Floor@ Total@ Flatten@ MapIndexed[#1 2^(#2 - 1) &, Flatten[Table[2^(PrimePi@ #1 - 1), {#2}] & @@@ FactorInteger@ #]]]] &], {n, 79}] (* Michael De Vlieger, Mar 11 2019 *)
-
PARI
A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)}; A156552(n) = if(1==n, 0, if(!(n%2), 1+(2*A156552(n/2)), 2*A156552(A064989(n)))); memoA323243 = Map(); A323243(n) = if(1==n, 0, my(v); if(mapisdefined(memoA323243,n,&v),v, v=sigma(A156552(n)); mapput(memoA323243,n,v); (v))); A324543(n) = sumdiv(n,d,moebius(n/d)*A323243(d));
Formula
a(n) = 2*A297112(n) - A329644(n), and for n > 1, a(n) = 2^A297113(n) - A329644(n). - Antti Karttunen, Dec 08 2019
Comments