cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324543 Möbius transform of A323243, where A323243(n) = sigma(A156552(n)).

Original entry on oeis.org

0, 1, 3, 3, 7, 2, 15, 4, 9, 5, 31, 3, 63, 2, 8, 16, 127, -1, 255, 4, 21, 16, 511, 8, 21, 20, 12, 27, 1023, 6, 2047, 8, 20, 48, 20, 20, 4095, 2, 78, 32, 8191, -6, 16383, 17, 9, 288, 32767, 8, 45, -3, 122, 45, 65535, 4, 53, 20, 270, 278, 131071, 2, 262143, 688, 12, 72, 56, 23, 524287, 125, 260, -8, 1048575, 20, 2097151, 260, 3, 363, 44, -7, 4194303
Offset: 1

Views

Author

Antti Karttunen, Mar 07 2019

Keywords

Comments

The first four zeros after a(1) occur at n = 192, 288, 3645, 6075.
There are 1562 negative terms among the first 10000 terms.
Applying this function to the divisors of the first four terms of A324201 reveals the following pattern:
----------------------------------------------------------------------------------
A324201 divisors a(n) applied to each: Sum
9: [1, 3, 9] -> [0, 3, 9] 12 = 2*6
125: [1, 5, 25, 125] -> [0, 7, 21, 28] 56 = 2*28
161051: [1, 11, 121, 1331, 14641, 161051] -> [0, 31, 93, 124, 496, 248] 992 = 2*496
410338673: [1, 17, 289, 4913, 83521, 1419857, 24137569, 410338673]
-> [0, 127, 381, 508, 2032, 1016, 9144, 3048] 16256 = 2*8128
The second term (the first nonzero) of the latter list = A000668(n), and the sum is always twice the corresponding perfect number, which forces either it or at least many of its divisors to be present. For example, in the fourth case, although 8128 = A000396(4) itself is not present, we still have 127, 508, 1016 and 2032 in the list. See also A329644.

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, MoebiusMu[n/#] If[# == 1, 0, DivisorSigma[1, Floor@ Total@ Flatten@ MapIndexed[#1 2^(#2 - 1) &, Flatten[Table[2^(PrimePi@ #1 - 1), {#2}] & @@@ FactorInteger@ #]]]] &], {n, 79}] (* Michael De Vlieger, Mar 11 2019 *)
  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A156552(n) = if(1==n, 0, if(!(n%2), 1+(2*A156552(n/2)), 2*A156552(A064989(n))));
    memoA323243 = Map();
    A323243(n) = if(1==n, 0, my(v); if(mapisdefined(memoA323243,n,&v),v, v=sigma(A156552(n)); mapput(memoA323243,n,v); (v)));
    A324543(n) = sumdiv(n,d,moebius(n/d)*A323243(d));

Formula

a(n) = Sum_{d|n} A008683(n/d) * A323243(d).
a(A000040(n)) = A000225(n).
a(A001248(n)) = A173033(n) - A000225(n) = A068156(n) = 3*(2^n - 1).
a(2*A000040(n)) = A324549(n).
a(A002110(n)) = A324547(n).
a(n) = 2*A297112(n) - A329644(n), and for n > 1, a(n) = 2^A297113(n) - A329644(n). - Antti Karttunen, Dec 08 2019