cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324546 An analog of deficiency (A033879) for nonstandard factorization based on the sieve of Eratosthenes (A083221).

Original entry on oeis.org

1, 1, 2, 1, 4, 0, 6, 1, 5, 2, 10, -4, 12, 4, 6, 1, 16, -3, 18, -2, 14, 8, 22, -12, 19, 10, 10, 0, 28, -12, 30, 1, 12, 14, 22, -19, 36, 16, 18, -10, 40, -12, 42, 4, 41, 20, 46, -28, 41, 7, 26, 6, 52, -12, 94, -8, 22, 26, 58, -48, 60, 28, 22, 1, 38, -54, 66, 10, 30, -4, 70, -51, 72, 34, 30, 12, 58, -12, 78, -26, 42, 38, 82, -64, 102, 40, 18, -4, 88
Offset: 1

Views

Author

Antti Karttunen, Mar 06 2019

Keywords

Comments

Even positions for zeros is given by the even terms of A000396, because they are among the fixed points of permutation A250246. Whether there are any zeros in odd positions depends on whether there are any odd perfect numbers. If such zeros exist, they would not necessarily be in the same positions as in A033879.

Crossrefs

Programs

  • PARI
    up_to = 65539;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A020639(n) = if(n>1, if(n>n=factor(n, 0)[1, 1], n, factor(n)[1, 1]), 1); \\ From A020639
    A055396(n) = if(1==n,0,primepi(A020639(n)));
    v078898 = ordinal_transform(vector(up_to,n,A020639(n)));
    A078898(n) = v078898[n];
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A250246(n) = if(1==n,n,my(k = 2*A250246(A078898(n)), r = A055396(n)); if(1==r, k, while(r>1, k = A003961(k); r--); (k)));
    A324546(n) = { my(k=A250246(n)); (k+k - sigma(k)); };

Formula

a(n) = A033879(A250246(n)) = 2*A250246(n) - A324545(n).
a(n) = A250246(n) - A324535(n).