A324564
Number T(n,k) of permutations p of [n] such that n-k is the maximum of 0 and the number of elements in any integer interval [p(i)..i+n*[i=0, 0<=k<=n, read by rows.
1, 1, 0, 1, 1, 0, 4, 1, 1, 0, 15, 7, 1, 1, 0, 76, 31, 11, 1, 1, 0, 455, 185, 60, 18, 1, 1, 0, 3186, 1275, 435, 113, 29, 1, 1, 0, 25487, 10095, 3473, 1001, 215, 47, 1, 1, 0, 229384, 90109, 31315, 9289, 2299, 406, 76, 1, 1, 0, 2293839, 895169, 313227, 95747, 24610, 5320, 763, 123, 1, 1, 0
Offset: 0
Examples
Triangle T(n,k) begins: 1; 1, 0; 1, 1, 0; 4, 1, 1, 0; 15, 7, 1, 1, 0; 76, 31, 11, 1, 1, 0; 455, 185, 60, 18, 1, 1, 0; 3186, 1275, 435, 113, 29, 1, 1, 0; 25487, 10095, 3473, 1001, 215, 47, 1, 1, 0; ... Square array A(n,k) begins: 1, 0, 0, 0, 0, 0, ... 1, 1, 1, 1, 1, 1, ... 1, 1, 1, 1, 1, 1, ... 4, 7, 11, 18, 29, 47, ... 15, 31, 60, 113, 215, 406, ... 76, 185, 435, 1001, 2299, 5320, ... 455, 1275, 3473, 9289, 24610, 65209, ... 3186, 10095, 31315, 95747, 290203, 876865, ... ...
Links
- Alois P. Heinz, Rows n = 0..23, flattened
- Wikipedia, Integer intervals
- Wikipedia, Iverson bracket
- Wikipedia, Permanent (mathematics)
- Wikipedia, Permutation
- Wikipedia, Symmetric group
Crossrefs
Columns k=0-10 give: A002467 (for n>0), A324621, A324622, A324623, A324624, A324625, A324626, A324627, A324628, A324629, A324630.
Diagonals of the triangle (rows of the array) n=0, (1+2), 3-10 give: A000007, A000012, A000032 (for n>=3), A324631, A324632, A324633, A324634, A324635, A324636, A324637.
Row sums give A000142.
T(2n,n) or A(n,n) gives A324638.
Programs
-
Maple
b:= proc(n, k) option remember; `if`(k>n, 0, `if`(k=0, n!, LinearAlgebra[Permanent](Matrix(n, (i, j)-> `if`(j>=i and k+j
k+j, 1, 0))))) end: # as triangle: T:= (n, k)-> b(n, k)-b(n, k+1): seq(seq(T(n, k), k=0..n), n=0..10); # as array: A:= (n, k)-> b(n+k, k)-b(n+k, k+1): seq(seq(A(d-k, k), k=0..d), d=0..10); -
Mathematica
b[n_, k_] := b[n, k] = If[k > n, 0, If[k == 0, n!, Permanent[Table[If[j >= i && k+j < n+i || i > k+j, 1, 0], {i, n}, {j, n}]]]]; (* as triangle: *) T[n_, k_] := b[n, k] - b[n, k+1]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* as array: *) A[n_, k_] := b[n+k, k] - b[n+k, k+1]; Table[A[d-k, k], {d, 0, 10}, {k, 0, d}] // Flatten (* Jean-François Alcover, May 09 2019, after Alois P. Heinz *)
Comments