cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324571 Numbers whose ordered prime signature is equal to the set of distinct prime indices in decreasing order.

Original entry on oeis.org

1, 2, 9, 12, 40, 112, 125, 352, 360, 675, 832, 1008, 2176, 2401, 3168, 3969, 4864, 7488, 11776, 14000, 19584, 29403, 29696, 43776, 44000, 63488, 75600, 104000, 105984, 123201, 151552, 161051, 214375, 237600, 267264, 272000, 335872, 496125, 561600, 571392, 608000
Offset: 1

Views

Author

Gus Wiseman, Mar 08 2019

Keywords

Comments

These are a kind of self-describing numbers (cf. A001462, A304679). The increasing case is A109298.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The ordered prime signature (A124010) is the sequence of multiplicities (or exponents) in a number's prime factorization, taken in order of the prime base.
Also Heinz numbers of the integer partitions counted by A324572. The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
Each finite set of positive integers determines a unique term with those prime indices. For example, corresponding to {1,2,4,5} is 1397088 = prime(1)^5 * prime(2)^4 * prime(4)^2 * prime(5)^1.

Examples

			The sequence of terms together with their prime indices begins as follows. For example, we have 40: {1,1,1,3} because 40 = prime(1) * prime(1) * prime(1) * prime(3).
      1: {}
      2: {1}
      9: {2,2}
     12: {1,1,2}
     40: {1,1,1,3}
    112: {1,1,1,1,4}
    125: {3,3,3}
    352: {1,1,1,1,1,5}
    360: {1,1,1,2,2,3}
    675: {2,2,2,3,3}
    832: {1,1,1,1,1,1,6}
   1008: {1,1,1,1,2,2,4}
   2176: {1,1,1,1,1,1,1,7}
   2401: {4,4,4,4}
   3168: {1,1,1,1,1,2,2,5}
   3969: {2,2,2,2,4,4}
   4864: {1,1,1,1,1,1,1,1,8}
   7488: {1,1,1,1,1,1,2,2,6}
  11776: {1,1,1,1,1,1,1,1,1,9}
  14000: {1,1,1,1,3,3,3,4}
  19584: {1,1,1,1,1,1,1,2,2,7}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000],Reverse[PrimePi/@First/@If[#==1,{},FactorInteger[#]]]==Last/@If[#==1,{},FactorInteger[#]]&]