A324571 Numbers whose ordered prime signature is equal to the set of distinct prime indices in decreasing order.
1, 2, 9, 12, 40, 112, 125, 352, 360, 675, 832, 1008, 2176, 2401, 3168, 3969, 4864, 7488, 11776, 14000, 19584, 29403, 29696, 43776, 44000, 63488, 75600, 104000, 105984, 123201, 151552, 161051, 214375, 237600, 267264, 272000, 335872, 496125, 561600, 571392, 608000
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins as follows. For example, we have 40: {1,1,1,3} because 40 = prime(1) * prime(1) * prime(1) * prime(3). 1: {} 2: {1} 9: {2,2} 12: {1,1,2} 40: {1,1,1,3} 112: {1,1,1,1,4} 125: {3,3,3} 352: {1,1,1,1,1,5} 360: {1,1,1,2,2,3} 675: {2,2,2,3,3} 832: {1,1,1,1,1,1,6} 1008: {1,1,1,1,2,2,4} 2176: {1,1,1,1,1,1,1,7} 2401: {4,4,4,4} 3168: {1,1,1,1,1,2,2,5} 3969: {2,2,2,2,4,4} 4864: {1,1,1,1,1,1,1,1,8} 7488: {1,1,1,1,1,1,2,2,6} 11776: {1,1,1,1,1,1,1,1,1,9} 14000: {1,1,1,1,3,3,3,4} 19584: {1,1,1,1,1,1,1,2,2,7}
Crossrefs
Programs
-
Mathematica
Select[Range[1000],Reverse[PrimePi/@First/@If[#==1,{},FactorInteger[#]]]==Last/@If[#==1,{},FactorInteger[#]]&]
Comments