A324599 Irregular triangle with the representative solutions of the Diophantine equation x^2 - 5 congruent to 0 modulo N(n), with N(n) = A089270(n), for n >= 1.
0, 0, 4, 7, 9, 10, 11, 18, 6, 25, 13, 28, 15, 40, 8, 51, 26, 35, 17, 54, 20, 59, 19, 70, 10, 85, 45, 56, 21, 88, 48, 73, 23, 108, 12, 127, 40, 105, 68, 81, 55, 96, 25, 130, 30, 149, 27, 154, 14, 177, 76, 123, 95, 110, 29, 180, 48, 161, 65, 146
Offset: 1
Examples
The irregular triangle T(n, k) begins (pairs (x, N - x) in brackets): n, N \ k 1 2 3 4 ... ---------------------------------- 1, 1: 0 2, 5: 0 3, 11: (4 7) 4, 19: (9 10) 5, 29: (11 18) 6, 31: (6 25) 7, 41: (13 28) 8, 55: (15 40) 9, 59: (8 51) 10, 61: (26 35) 11, 71: (17 54) 12, 79: (20 59) 13, 89: (19 70) 14, 95: (10 85) 15, 101: (45 56) 16, 109: (21 88) 17, 121: (48 73) 18, 131: (23 108) 19, 139: (12 127) 20, 145: (40 105) .... 29, 209: (29 180) (48 161) ... 41, 319: (18 301) (40 279) ... 43, 341: (37 304) (161 180) ... 59, 451: (95 356) (136 315)
Comments