A324621
Number of permutations p of [1+n] such that n is the maximum of the number of elements in any integer interval [p(i)..i+(1+n)*[i
0, 1, 1, 7, 31, 185, 1275, 10095, 90109, 895169, 9793829, 116998199, 1515196619, 21143666585, 316260079951, 5047672782687, 85623656678457, 1538245254809537, 29176112648650441, 582614412521648359, 12217688610474042487, 268445509189890555577
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..449
Programs
-
Maple
a:= proc(n) option remember; `if`(n<5, [0, 1$2, 7, 31][n+1], ((2*n^4-3*n^3-2*n^2+n+4)*a(n-1) -(n^5-4*n^4+7*n^2+6*n-14)* a(n-2) -(n^5-2*n^4-4*n^3+2*n^2+13*n-12)*a(n-3)-(n-2)* (n^3+2*n^2+n-2)*a(n-4))/(n^3-n^2-2)) end: seq(a(n), n=0..23);
-
Mathematica
menage[n_] := If[n == 0, 1, 2n Sum[(-1)^k Binomial[2n-k, k] (n-k)!/(2n-k), {k, 0, n}]]; a[n_] := If[n == 0, 0, Subfactorial[n+1] - menage[n+1]]; a /@ Range[0, 21] (* Jean-François Alcover, Oct 28 2021 *)