A324643 Numbers k such that bitand(2k,sigma(k))/2 = k = bitand(k,sigma(k)-k), where bitand is bitwise-AND, A004198.
6, 20, 28, 36, 88, 100, 104, 264, 272, 304, 368, 392, 464, 496, 550, 784, 1032, 1040, 1044, 1056, 1068, 1104, 1120, 1184, 1232, 1312, 1376, 1504, 1696, 1888, 1952, 2140, 3222, 4100, 4128, 4160, 4288, 4512, 4544, 4624, 4640, 4672, 5056, 5312, 5696, 6208, 6328, 6464, 6592, 6808, 6848, 6976, 7232, 7304, 8128, 8288, 8968, 9256, 10184
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..17020
- Michael De Vlieger, Log log scatterplot of a(n), n = 1..17020, labeling cusps in the plot.
- Index entries for sequences related to binary expansion of n
- Index entries for sequences where any odd perfect numbers must occur
- Index entries for sequences related to sigma(n)
Crossrefs
Programs
-
Mathematica
Select[Range[10^4], Block[{s = DivisorSigma[1, #]}, # == BitAnd[#, s-#] && 2*# == BitAnd[2*#, s]] &] (* Paolo Xausa, Mar 11 2024 *)
-
PARI
for(n=1,oo,if( (bitand(n, sigma(n)-n)==n) && (bitand(n+n, sigma(n))==2*n),print1(n,", ")))
Comments