cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A324811 a(n) = A324728(n) - A061395(n).

Original entry on oeis.org

0, 0, 0, 2, 0, 1, 0, 3, 2, 1, 0, 2, 0, 1, 2, 4, 0, 1, 0, 2, 2, 1, 0, 3, 2, 1, 3, 2, 0, 3, 0, 5, 1, 1, 2, 4, 0, 1, 2, 3, 0, 1, 0, 2, 3, 1, 0, 4, 2, 1, 1, 2, 0, 1, 2, 3, 2, 1, 0, 2, 0, 1, 1, 6, 1, 2, 0, 2, 1, 1, 0, 5, 0, 1, 3, 2, 2, 1, 0, 4, 5, 1, 0, 3, 2, 1, 2, 3, 0, 4, 2, 2, 1, 1, 2, 5, 0, 1, 3, 4, 0, 2, 0, 3, 3
Offset: 1

Views

Author

Antti Karttunen, Mar 17 2019

Keywords

Comments

The first negative term is a(182) = -6, as A324712(182) = 0 and 182 = 2*7*13 = prime(1) * prime(4) * prime(6).
The next negative term after that is a(198) = -4, as A324712(198) = 1, and 198 = 2 * 3^2 * 11 = prime(1) * prime(2)^2 * prime(5).
There are only 161 negative terms among the first 10000 terms.

Crossrefs

Programs

Formula

a(n) = A324728(n) - A061395(n).
a(p) = 0 for all primes p.

A324733 a(n) = 0 if A324712(n) = 0, otherwise a(n) = 1 + A000523(A324712(n)) - A007814(A324712(n)).

Original entry on oeis.org

0, 1, 2, 3, 3, 1, 4, 2, 4, 4, 5, 4, 6, 3, 4, 1, 7, 3, 8, 3, 6, 5, 9, 2, 5, 6, 3, 6, 10, 4, 11, 3, 5, 7, 5, 4, 12, 7, 6, 1, 13, 2, 14, 7, 6, 9, 15, 3, 6, 4, 1, 8, 16, 1, 7, 5, 8, 8, 17, 4, 18, 11, 3, 4, 6, 7, 19, 9, 9, 4, 20, 5, 21, 12, 6, 10, 6, 7, 22, 4, 3, 13, 23, 7, 6, 14, 10, 5, 24, 7, 8, 11, 11, 15, 8, 3, 25, 2, 8, 6, 26, 9, 27, 2, 5
Offset: 1

Views

Author

Antti Karttunen, Mar 17 2019

Keywords

Crossrefs

Programs

Formula

If A324712(n) = 0, then a(n) = 0, otherwise a(n) = 1 + A324728(n) - A324724(n).

A324735 Difference between the binary length and the binary weight of A324712. a(n) = 0 if A324712(n) = 0.

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 0, 2, 0, 1, 0, 0, 0, 2, 2, 4, 0, 0, 0, 2, 2, 2, 0, 3, 1, 3, 3, 2, 0, 2, 0, 3, 3, 3, 4, 3, 0, 2, 4, 5, 0, 3, 0, 3, 2, 3, 0, 3, 2, 2, 7, 3, 0, 2, 4, 3, 4, 5, 0, 2, 0, 5, 3, 5, 4, 1, 0, 5, 3, 2, 0, 3, 0, 3, 3, 2, 4, 1, 0, 3, 5, 6, 0, 1, 6, 4, 6, 4, 0, 1, 2, 5, 5, 6, 5, 4, 0, 3, 4, 3, 0, 4, 0, 7, 3
Offset: 1

Views

Author

Antti Karttunen, Mar 17 2019

Keywords

Comments

Number of nonleading 0-bits in A324712(n), with a(n) = 0 if A324712(n) = 0.

Crossrefs

Programs

Formula

a(n) = A324728(n) - A324829(n).
If A324712(n) > 0, then a(n) = -1 + A324734(n) + A324724(n).
a(p) = 0 for all primes p.
Showing 1-3 of 3 results.