A324737 Number of subsets of {2...n} containing every element of {2...n} whose prime indices all belong to the subset.
1, 2, 3, 6, 8, 16, 24, 48, 84, 168, 216, 432, 648, 1296, 2448, 4896, 6528, 13056, 19584, 39168, 77760, 155520, 229248, 458496, 790272, 1580544, 3128832, 6257664, 9386496, 18772992, 24081408, 48162816, 95938560, 191877120, 378335232, 756670464, 1135005696, 2270011392
Offset: 1
Keywords
Examples
The a(1) = 1 through a(6) = 16 subsets: {} {} {} {} {} {} {2} {3} {3} {4} {4} {2,3} {4} {5} {5} {2,3} {3,5} {6} {3,4} {4,5} {3,5} {2,3,4} {2,3,5} {4,5} {3,4,5} {4,6} {2,3,4,5} {5,6} {2,3,5} {3,4,5} {3,5,6} {4,5,6} {2,3,4,5} {2,3,5,6} {3,4,5,6} {2,3,4,5,6} An example for n = 15 is {2, 3, 5, 8, 9, 10, 11, 15}. The numbers from 2 to 15 with all prime indices in the subset are {3, 5, 9, 11, 15}, which all belong to the subset, as required.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..100
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Subsets[Range[2,n]],Function[set,SubsetQ[set,Select[Range[2,n],SubsetQ[set,PrimePi/@First/@FactorInteger[#]]&]]]]],{n,10}]
-
PARI
pset(n)={my(b=0, f=factor(n)[, 1]); sum(i=1, #f, 1<<(primepi(f[i])))} a(n)={my(p=vector(n-1, k, pset(k+1)>>1), d=0); for(i=1, #p, d=bitor(d, p[i])); ((k, b)->if(k>#p, 1, my(t=self()(k+1, b+(1<
Andrew Howroyd, Aug 24 2019
Extensions
Terms a(21) and beyond from Andrew Howroyd, Aug 24 2019
Comments