cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324739 Number of subsets of {2...n} containing no element whose prime indices all belong to the subset.

Original entry on oeis.org

1, 2, 3, 6, 10, 20, 30, 60, 96, 192, 312, 624, 936, 1872, 3744, 7488, 12480, 24960, 37440, 74880, 142848, 285696, 456192, 912384, 1548288, 3096576, 5308416, 10616832, 15925248, 31850496, 51978240, 103956480, 200835072, 401670144, 771489792, 1542979584, 2314469376
Offset: 1

Views

Author

Gus Wiseman, Mar 14 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(1) = 1 through a(6) = 20 subsets:
  {}  {}   {}   {}     {}       {}
      {2}  {2}  {2}    {2}      {2}
           {3}  {3}    {3}      {3}
                {4}    {4}      {4}
                {2,4}  {5}      {5}
                {3,4}  {2,4}    {6}
                       {2,5}    {2,4}
                       {3,4}    {2,5}
                       {4,5}    {2,6}
                       {2,4,5}  {3,4}
                                {3,6}
                                {4,5}
                                {4,6}
                                {5,6}
                                {2,4,5}
                                {2,4,6}
                                {2,5,6}
                                {3,4,6}
                                {4,5,6}
                                {2,4,5,6}
		

Crossrefs

The maximal case is A324762. The case of subsets of {1...n} is A324738. The strict integer partition version is A324750. The integer partition version is A324755. The Heinz number version is A324760. An infinite version is A324694.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[2,n]],!MemberQ[#,k_/;SubsetQ[#,PrimePi/@First/@FactorInteger[k]]]&]],{n,10}]
  • PARI
    pset(n)={my(b=0,f=factor(n)[,1]); sum(i=1, #f, 1<<(primepi(f[i])))}
    a(n)={my(p=vector(n,k,pset(k)), d=0); for(i=1, #p, d=bitor(d, p[i]));
    ((k,b)->if(k>#p, 1, my(t=self()(k+1,b)); if(bitnegimply(p[k], b), t+=if(bittest(d,k), self()(k+1, b+(1<Andrew Howroyd, Aug 16 2019

Extensions

Terms a(21) and beyond from Andrew Howroyd, Aug 16 2019