A324739 Number of subsets of {2...n} containing no element whose prime indices all belong to the subset.
1, 2, 3, 6, 10, 20, 30, 60, 96, 192, 312, 624, 936, 1872, 3744, 7488, 12480, 24960, 37440, 74880, 142848, 285696, 456192, 912384, 1548288, 3096576, 5308416, 10616832, 15925248, 31850496, 51978240, 103956480, 200835072, 401670144, 771489792, 1542979584, 2314469376
Offset: 1
Keywords
Examples
The a(1) = 1 through a(6) = 20 subsets: {} {} {} {} {} {} {2} {2} {2} {2} {2} {3} {3} {3} {3} {4} {4} {4} {2,4} {5} {5} {3,4} {2,4} {6} {2,5} {2,4} {3,4} {2,5} {4,5} {2,6} {2,4,5} {3,4} {3,6} {4,5} {4,6} {5,6} {2,4,5} {2,4,6} {2,5,6} {3,4,6} {4,5,6} {2,4,5,6}
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..100
Crossrefs
The maximal case is A324762. The case of subsets of {1...n} is A324738. The strict integer partition version is A324750. The integer partition version is A324755. The Heinz number version is A324760. An infinite version is A324694.
Programs
-
Mathematica
Table[Length[Select[Subsets[Range[2,n]],!MemberQ[#,k_/;SubsetQ[#,PrimePi/@First/@FactorInteger[k]]]&]],{n,10}]
-
PARI
pset(n)={my(b=0,f=factor(n)[,1]); sum(i=1, #f, 1<<(primepi(f[i])))} a(n)={my(p=vector(n,k,pset(k)), d=0); for(i=1, #p, d=bitor(d, p[i])); ((k,b)->if(k>#p, 1, my(t=self()(k+1,b)); if(bitnegimply(p[k], b), t+=if(bittest(d,k), self()(k+1, b+(1<
Andrew Howroyd, Aug 16 2019
Extensions
Terms a(21) and beyond from Andrew Howroyd, Aug 16 2019
Comments