A324744 Number of maximal subsets of {1...n} containing no element whose prime indices all belong to the subset.
1, 1, 2, 2, 3, 4, 4, 5, 6, 8, 8, 11, 11, 22, 22, 22, 22, 28, 28, 44, 44, 52, 52, 76, 76, 88, 88, 96, 96, 184, 184, 240, 240, 264, 264, 296, 296, 592, 592, 592, 592, 728, 728, 1456, 1456, 1456, 1456, 2912, 2912, 3168, 3168, 3168, 3168, 5568, 5568, 5568, 5568
Offset: 0
Keywords
Examples
The a(1) = 1 through a(8) = 6 maximal subsets: {1} {1} {2} {1,3} {1,3} {1,3,6} {3,4,6} {1,3,6,7} {2} {1,3} {2,4} {1,5} {1,5,6} {1,3,6,7} {1,5,6,7} {3,4} {3,4} {3,4,6} {1,5,6,7} {3,4,6,8} {2,4,5} {2,4,5,6} {2,4,5,6} {3,6,7,8} {2,5,6,7} {2,4,5,6,8} {2,5,6,7,8}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..100
Crossrefs
Programs
-
Mathematica
maxim[s_]:=Complement[s,Last/@Select[Tuples[s,2],UnsameQ@@#&&SubsetQ@@#&]]; Table[Length[maxim[Select[Subsets[Range[n]],!MemberQ[#,k_/;SubsetQ[#,PrimePi/@First/@FactorInteger[k]]]&]]],{n,0,10}]
-
PARI
pset(n)={my(b=0, f=factor(n)[, 1]); sum(i=1, #f, 1<<(primepi(f[i])))} a(n)={my(p=vector(n, k, if(k==1, 1, pset(k))), d=0); for(i=1, #p, d=bitor(d, p[i])); my(ismax(b)=for(k=1, #p, if(!bittest(b,k) && bitnegimply(p[k], b), my(e=bitor(b, 1<
#p, ismax(b), my(f=bitnegimply(p[k], b)); if(!f || bittest(d, k), self()(k+1, b)) + if(f, self()(k+1, b+(1< Andrew Howroyd, Aug 27 2019
Extensions
Terms a(16) and beyond from Andrew Howroyd, Aug 27 2019
Comments