cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324745 Numbers k with exactly two distinct prime factors and such that phi(k) is a square.

Original entry on oeis.org

10, 12, 34, 40, 48, 57, 63, 74, 76, 85, 108, 136, 160, 185, 192, 202, 219, 250, 292, 296, 304, 394, 432, 451, 489, 505, 513, 514, 544, 567, 629, 640, 652, 679, 768, 802, 808, 873, 972, 985, 1000, 1057, 1154, 1168, 1184, 1216, 1285, 1354
Offset: 1

Views

Author

Bernard Schott, Mar 12 2019

Keywords

Comments

This sequence is the intersection of A007774 and A039770.
The sequences A324746 and A324747 form a partition of this sequence.
See the file "Subfamilies and subsequences" (& II) in A039770 for more details, proofs with data, comments, formulas and examples.
The integers with only one prime factor and whose totient is a square are in A054755.

Examples

			1st family: 136 = 2^3 * 37 and phi(136) = 8^2.
2nd family: 652 = 2^2 * 163 and phi(652) = 18^2.
		

Crossrefs

Intersection of A007774 and A039770.

Programs

  • Maple
    filter:= n -> issqr(numtheory:-phi(n)) and nops(numtheory:-factorset(n))=2:
    select(filter, [$1..2000]); # Robert Israel, Mar 18 2019
  • Mathematica
    Select[Range[1400], And[PrimeNu[#] == 2, IntegerQ@ Sqrt@ EulerPhi@ #] &] (* Michael De Vlieger, Mar 21 2019 *)
  • PARI
    isok(n) = (omega(n)==2) && issquare(eulerphi(n)); \\ Michel Marcus, Mar 17 2019

Formula

1st family (A324746): The primitive terms are defined by p*q, p < q, with phi(p*q) = (p-1)*(q-1) = m^2. The general terms are defined by k = p^(2s+1) * q^(2t+1), s,t >= 0, with phi(k) = (p^s * q^t * m)^2.
2nd family (A324747): The primitive terms are defined by p^2 * q, p <> q, with phi(p^2 * q) = p*(p-1)*(q-1) = m^2. The general terms are defined by k = p^(2s ) * q^(2t+1), s >= 1, t >= 0, with phi(k) = (p^(s-1) * q^t * m)^2.