A324746 Numbers k with exactly two distinct prime factors and such that phi(k) is square, when k = p^(2s+1) * q^(2t+1) with p < q primes, s,t >= 0.
10, 34, 40, 57, 74, 85, 136, 160, 185, 202, 219, 250, 296, 394, 451, 489, 505, 513, 514, 544, 629, 640, 679, 802, 808, 985, 1000, 1057, 1154, 1184, 1285, 1354, 1387, 1417, 1576, 1717, 1971, 2005, 2047, 2056, 2125, 2176, 2509, 2560, 2594, 2649, 2761, 2885, 3097
Offset: 1
Keywords
Examples
629 = 17 * 37 and phi(629) = 16 * 36 = 9^2. 808 = 2^3 * 101 and phi(808) = (2^1 * 101^0 * 10)^2 = 20^2.
Crossrefs
Programs
-
Maple
N:= 10^4: Res:= {}: p:= 1: do p:= nextprime(p); if p^2 >= N then break fi; F:= ifactors(p-1)[2]; dm:= mul(t[1]^ceil(t[2]/2),t=F); for j from (p-1)/dm+1 do q:= (j*dm)^2/(p-1) + 1; if q > N then break fi; if isprime(q) then Res:= Res union {seq(seq( p^(2*s+1)*q^(2*t+1),t=0..floor((log[q](N/p^(2*s+1))-1)/2)), s=0..floor((log[p](N/q)-1)/2))} fi od od: sort(convert(Res,list)); # Robert Israel, Mar 22 2019
-
Mathematica
Select[Range[6, 3100], And[PrimeNu@ # == 2, IntegerQ@ Sqrt@ EulerPhi@ #, IntegerQ@ Sqrt[Times @@ (FactorInteger[#][[All, 1]] - 1 )]] &] (* Michael De Vlieger, Mar 24 2019 *)
-
PARI
isok(k) = {if (issquare(eulerphi(k)), my(expo = factor(k)[,2]); if ((#expo == 2)&& (expo[1]%2) == (expo[2]%2), return (1)););} \\ Michel Marcus, Mar 18 2019
Formula
phi(p*q) = (p-1)*(q-1) = m^2 for primitive terms.
phi(k) = (p^s * q^t * m)^2 with k as in the name of this sequence.
Comments