A324763 Number of maximal subsets of {2...n} containing no prime indices of the elements.
1, 1, 2, 2, 2, 3, 6, 6, 6, 6, 10, 10, 16, 16, 16, 16, 24, 24, 48, 48, 48, 48, 84, 84, 84, 84, 84, 84, 144, 144, 228, 228, 228, 228, 228, 228, 420, 420, 420, 420, 648, 648, 1080, 1080, 1080, 1080, 1800, 1800, 1800, 1800, 1800, 1800, 3600, 3600, 3600, 3600, 3600
Offset: 1
Keywords
Examples
The a(1) = 1 through a(9) = 6 subsets: {} {2} {2} {2,4} {3,4} {2,4,5} {2,4,5} {2,4,5,8} {2,4,5,8} {3} {3,4} {2,4,5} {3,4,6} {2,5,7} {2,5,7,8} {2,5,7,8} {4,5,6} {3,4,6} {3,4,6,8} {3,4,6,8,9} {3,6,7} {3,6,7,8} {3,6,7,8,9} {4,5,6} {4,5,6,8} {4,5,6,8,9} {5,6,7} {5,6,7,8} {5,6,7,8,9}
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..100
Crossrefs
Programs
-
Mathematica
maxim[s_]:=Complement[s,Last/@Select[Tuples[s,2],UnsameQ@@#&&SubsetQ@@#&]]; Table[Length[maxim[Select[Subsets[Range[2,n]],Intersection[#,PrimePi/@First/@Join@@FactorInteger/@#]=={}&]]],{n,10}]
-
PARI
pset(n)={my(b=0, f=factor(n)[, 1]); sum(i=1, #f, 1<<(primepi(f[i])))} a(n)={my(p=vector(n-1, k, pset(k+1)>>1), d=0); for(i=1, #p, d=bitor(d, p[i])); my(ismax(b)=my(e=0); forstep(k=#p, 1, -1, if(bittest(b,k), e=bitor(e,p[k]), if(!bittest(e,k) && !bitand(p[k], b), return(0)) )); 1); ((k, b)->if(k>#p, ismax(b), my(f=!bitand(p[k], b)); if(!f || bittest(d, k), self()(k+1, b)) + if(f, self()(k+1, b+(1<
Andrew Howroyd, Aug 26 2019
Extensions
Terms a(16) and beyond from Andrew Howroyd, Aug 26 2019
Comments