A324769 Matula-Goebel numbers of fully anti-transitive rooted trees.
1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 21, 23, 25, 27, 29, 31, 32, 35, 37, 41, 43, 47, 49, 51, 53, 57, 59, 61, 63, 64, 65, 67, 71, 73, 77, 79, 81, 83, 85, 89, 91, 95, 97, 101, 103, 107, 109, 113, 115, 121, 125, 127, 128, 129, 131, 133, 137, 139, 143, 147
Offset: 1
Keywords
Examples
The sequence of fully anti-transitive rooted trees together with their Matula-Goebel numbers begins: 1: o 2: (o) 3: ((o)) 4: (oo) 5: (((o))) 7: ((oo)) 8: (ooo) 9: ((o)(o)) 11: ((((o)))) 13: ((o(o))) 16: (oooo) 17: (((oo))) 19: ((ooo)) 21: ((o)(oo)) 23: (((o)(o))) 25: (((o))((o))) 27: ((o)(o)(o)) 29: ((o((o)))) 31: (((((o))))) 32: (ooooo) 35: (((o))(oo)) 37: ((oo(o))) 41: (((o(o)))) 43: ((o(oo))) 47: (((o)((o)))) 49: ((oo)(oo))
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; fullantiQ[n_]:=Intersection[Union@@Rest[FixedPointList[Union@@primeMS/@#&,primeMS[n]]],primeMS[n]]=={}; Select[Range[100],fullantiQ]
Comments