A324841 Matula-Goebel numbers of fully recursively anti-transitive rooted trees.
1, 2, 3, 4, 5, 7, 8, 9, 11, 16, 17, 19, 21, 23, 25, 27, 31, 32, 35, 49, 51, 53, 57, 59, 63, 64, 67, 73, 77, 81, 83, 85, 95, 97, 103, 115, 121, 125, 127, 128, 131, 133, 147, 149, 153, 159, 161, 171, 175, 177, 187, 189, 201, 209, 217, 227, 233, 241, 243, 245
Offset: 1
Keywords
Examples
The sequence of fully recursively anti-transitive rooted trees together with their Matula-Goebel numbers begins: 1: o 2: (o) 3: ((o)) 4: (oo) 5: (((o))) 7: ((oo)) 8: (ooo) 9: ((o)(o)) 11: ((((o)))) 16: (oooo) 17: (((oo))) 19: ((ooo)) 21: ((o)(oo)) 23: (((o)(o))) 25: (((o))((o))) 27: ((o)(o)(o)) 31: (((((o))))) 32: (ooooo) 35: (((o))(oo)) 49: ((oo)(oo)) 51: ((o)((oo))) 53: ((oooo)) 57: ((o)(ooo)) 59: ((((oo)))) 63: ((o)(o)(oo))
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; fratQ[n_]:=And[Intersection[Union@@Rest[FixedPointList[Union@@primeMS/@#&,primeMS[n]]],primeMS[n]]=={},And@@fratQ/@primeMS[n]]; Select[Range[100],fratQ]
Comments