cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324843 Number of unlabeled rooted trees with n nodes where the branches of any branch of any terminal subtree form a submultiset of the branches of the same subtree.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 4, 8, 9, 15, 17, 31, 35, 57, 70, 111, 136, 213, 265, 405, 517, 763, 987, 1458, 1893, 2736, 3611, 5161, 6836, 9702
Offset: 1

Views

Author

Gus Wiseman, Mar 18 2019

Keywords

Comments

A subset of totally transitive rooted trees (A318185).

Examples

			The a(1) = 1 through a(8) = 8 rooted trees:
  o  (o)  (oo)  (ooo)   (oooo)   (ooooo)    (oooooo)    (ooooooo)
                (o(o))  (oo(o))  (oo(oo))   (ooo(oo))   (ooo(ooo))
                                 (ooo(o))   (oooo(o))   (oooo(oo))
                                 (o(o)(o))  (oo(o)(o))  (ooooo(o))
                                                        (oo(o)(oo))
                                                        (ooo(o)(o))
                                                        (o(o)(o)(o))
                                                        (o(o)(o(o)))
		

Crossrefs

The Matula-Goebel numbers of these trees are given by A324842.

Programs

  • Mathematica
    submultQ[cap_,fat_]:=And@@Function[i,Count[fat,i]>=Count[cap,i]]/@Union[List@@cap];
    rallt[n_]:=Select[Union[Sort/@Join@@(Tuples[rallt/@#]&/@IntegerPartitions[n-1])],And@@Table[submultQ[b,#],{b,#}]&];
    Table[Length[rallt[n]],{n,10}]