A324884 a(1) = 0; for n > 1, a(n) = A001511(A324819(n)), where A324819(n) = 2*A156552(n) OR A323243(n).
0, 1, 1, 2, 1, 2, 1, 2, 3, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 3, 2, 3, 2, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3, 2, 1, 2, 3, 1, 3, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3, 2, 2, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 3, 2, 1, 2, 4, 2, 3, 2, 1, 2, 1, 2, 2, 2, 3, 2, 1, 1, 3, 2, 1, 2, 1, 2, 3
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000 (based on Hans Havermann's factorization of A156552)
- Index entries for sequences computed from indices in prime factorization
- Index entries for sequences related to sigma(n)
Programs
-
PARI
A156552(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552 A324819(n) = bitor(2*A156552(n),A323243(n)); \\ Needs code also from A323243. A001511ext(n) = if(!n,n,sign(n)*(1+valuation(n,2))); \\ Like A001511 but gives 0 for 0 and -A001511(-n) for negative numbers. A324884(n) = A001511ext(A324819(n));
Comments