cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324898 Odd numbers k such that sigma(k) is congruent to 2 modulo 4 and k = A318458(k), where A318458(k) is bitwise-AND of k and sigma(k)-k.

Original entry on oeis.org

236925, 3847725, 51122925, 69468525, 151141725, 154669725, 269748225, 344211525, 415565325, 445817925, 551569725, 1111904325, 1112565825, 1113756525, 1175717025, 1400045625, 1631666925, 1695170925, 1820873925, 1915847325, 1946981925, 2179080225, 2321121825, 2453690925, 2460041325, 2491740225, 3223500525, 3493517445, 3775103325
Offset: 1

Views

Author

Antti Karttunen, Apr 19 2019

Keywords

Comments

If this sequence has no common terms with A324647, or no terms common with A324727, then there are no odd perfect numbers.
The first 29 terms factored:
236925 = 3^6 * 5^2 * 13,
3847725 = 3^2 * 5^2 * 7^2 * 349,
51122925 = 3^2 * 5^2 * 7^2 * 4637,
69468525 = 3^2 * 5^2 * 7^2 * 6301,
151141725 = 3^2 * 5^2 * 7^2 * 13709,
154669725 = 3^2 * 5^2 * 7^2 * 14029,
269748225 = 3^6 * 5^2 * 19^2 * 41,
344211525 = 3^4 * 5^2 * 7^2 * 3469,
415565325 = 3^2 * 5^2 * 7^2 * 37693,
445817925 = 3^4 * 5^2 * 7^2 * 4493,
551569725 = 3^2 * 5^2 * 7^4 * 1021,
1111904325 = 3^2 * 5^2 * 7^2 * 100853,
1112565825 = 3^2 * 5^2 * 7^2 * 100913,
1113756525 = 3^2 * 5^2 * 7^2 * 101021,
1175717025 = 3^4 * 5^2 * 7^2 * 17^2 * 41,
1400045625 = 3^2 * 5^4 * 11^4 * 17,
1631666925 = 3^2 * 5^2 * 7^2 * 147997,
1695170925 = 3^2 * 5^2 * 7^2 * 153757,
1820873925 = 3^4 * 5^2 * 13 * 263^2, [Here the unitary prime is not the largest]
1915847325 = 3^2 * 5^2 * 7^2 * 173773,
1946981925 = 3^2 * 5^2 * 7^2 * 176597,
2179080225 = 3^4 * 5^2 * 7^2 * 21961,
2321121825 = 3^4 * 5^2 * 11^2 * 9473,
2453690925 = 3^2 * 5^2 * 7^2 * 222557,
2460041325 = 3^2 * 5^2 * 7^2 * 223133,
2491740225 = 3^6 * 5^2 * 13^2 * 809,
3223500525 = 3^2 * 5^2 * 7^2 * 292381,
3493517445 = 3^6 * 5^1 * 11^2 * 89^2, [Here the unitary prime is not the largest]
3775103325 = 3^2 * 5^2 * 7^2 * 342413.
Subsequence of A228058 provided this sequence does not contain any prime powers. - Antti Karttunen, Jun 17 2019
Sequence contains no prime powers up to 10^20. I believe any prime powers must be of the form (4k+1)^(4e+1), in which case I have verified this up to 10^50. - Charles R Greathouse IV, Dec 08 2021

Crossrefs

Intersection of A191218 and A324897, also intersection of A191218 and A324649.

Programs

  • Mathematica
    Select[Range[10^5, 10^8, 2], And[Mod[#2, 4] == 2, BitAnd[#1, #2 - #1] == #1] & @@ {#, DivisorSigma[1, #]} &] (* Michael De Vlieger, Jun 22 2019 *)
  • PARI
    for(n=1, oo, if((n%2)&&2==((t=sigma(n))%4)&&(bitand(n, t-n)==n), print1(n,", ")));