cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324900 Fully multiplicative with a(prime(k)) = Lucas(2*(k+1)) for k-th prime p, where Lucas(n) = A000032(n).

Original entry on oeis.org

1, 7, 18, 49, 47, 126, 123, 343, 324, 329, 322, 882, 843, 861, 846, 2401, 2207, 2268, 5778, 2303, 2214, 2254, 15127, 6174, 2209, 5901, 5832, 6027, 39603, 5922, 103682, 16807, 5796, 15449, 5781, 15876, 271443, 40446, 15174, 16121, 710647, 15498, 1860498, 15778, 15228, 105889, 4870847, 43218, 15129, 15463, 39726, 41307, 12752043
Offset: 1

Views

Author

Antti Karttunen, Apr 15 2019

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := LucasL[2*(PrimePi[p]+1)]^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 60] (* Amiram Eldar, Aug 28 2023 *)
  • PARI
    A000032(n) = (fibonacci(n+1)+fibonacci(n-1));
    A324900(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = A000032(2*(1+primepi(f[i, 1])))); factorback(f); };

Formula

Fully multiplicative with a(prime(k)) = A000032(2*(k+1)) = A000045(2k+1) + A000045(2k+3).
Sum_{n>=1} 1/a(n) = 1 / Product_{k>=1} (1 - 1/Lucas(2*k+2)) = 1.278911382005... . - Amiram Eldar, Aug 28 2023