cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A324921 Index of first occurrence of n in A324920.

Original entry on oeis.org

0, 1, 2, 3, 10, 11, 26, 83, 178, 179, 362, 1835, 9188, 42709, 162466, 358487, 1877938, 11596979, 57866702, 94418279, 1888365980
Offset: 0

Views

Author

Robert G. Wilson v, Mar 20 2019

Keywords

Crossrefs

Programs

  • Mathematica
    g[n_] := Block[{d = Divisors@ n}, len = Length@ d; If[ OddQ@ len, 0, d[[1 + len/2]] - d[[len/2]]]]; f[n_] := Length@ NestWhileList[g, n, # > 0 &] - 1; t[_] := -1; k = 0; While[k < 1000000001, a = f@ k; If[ t[a] == -1, t[a] = k]; k++]; t@# & /@ Range[0, 17]
  • PARI
    a056737(n)=n=divisors(n); n[(2+#n)\2]-n[(1+#n)\2] \\ after M. F. Hasler in A056737
    a324920(n) = my(x=n, i=0); while(x!=0, i++; x=a056737(x)); i
    a(n) = for(k=0, oo, if(a324920(k)==n, return(k))) \\ Felix Fröhlich, Mar 20 2019

Extensions

a(18)-a(20) from Daniel Suteu, Mar 20 2019

A307034 a(n) is the smallest integer k of the form k = x*(x + a(n-1)), such that A324920(k) = n, for some positive integer x, with a(0) = 0.

Original entry on oeis.org

0, 1, 2, 3, 10, 11, 26, 87, 178, 179, 362, 1835, 22164, 155197, 620804, 5587317, 55873270, 167619819, 1340958616, 57661222337, 345967334058, 25255615391563, 858690923314298, 4293454616571515, 60108364632001406, 3185743325496077327, 178401626227780333448, 1605614636050023001113
Offset: 0

Views

Author

Daniel Suteu and Robert G. Wilson v, Mar 23 2019

Keywords

Comments

Inspired by A324921.
This sequence provides upper bounds for A324921, i.e.: A324921(n) <= a(n).

Crossrefs

Programs

  • PARI
    f(n) = my(d=divisors(n)); d[(2+#d)\2]-d[(1+#d)\2]; \\ A056737
    g(n) = my(k=0); while(n!=0, k++; n=f(n)); k; \\ A324920
    a(n) = if(n <= 0, return(0)); my(t=a(n-1)); for(k=1, oo, if(g(k*(k+t)) == n, return(k*(k+t))));
Showing 1-2 of 2 results.