cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324927 Matula-Goebel numbers of rooted trees of depth 2. Numbers that are not powers of 2 but whose prime indices are all powers of 2.

Original entry on oeis.org

3, 6, 7, 9, 12, 14, 18, 19, 21, 24, 27, 28, 36, 38, 42, 48, 49, 53, 54, 56, 57, 63, 72, 76, 81, 84, 96, 98, 106, 108, 112, 114, 126, 131, 133, 144, 147, 152, 159, 162, 168, 171, 189, 192, 196, 212, 216, 224, 228, 243, 252, 262, 266, 288, 294, 304, 311, 318
Offset: 1

Views

Author

Gus Wiseman, Mar 21 2019

Keywords

Comments

Numbers n such that A109082(n) = 2.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also Heinz numbers of integer partitions into powers of 2 with at least one part > 1 (counted by A102378).

Examples

			The sequence of terms together with their prime indices begins:
   3: {2}
   6: {1,2}
   7: {4}
   9: {2,2}
  12: {1,1,2}
  14: {1,4}
  18: {1,2,2}
  19: {8}
  21: {2,4}
  24: {1,1,1,2}
  27: {2,2,2}
  28: {1,1,4}
  36: {1,1,2,2}
  38: {1,8}
  42: {1,2,4}
  48: {1,1,1,1,2}
  49: {4,4}
  53: {16}
  54: {1,2,2,2}
  56: {1,1,1,4}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],And[!IntegerQ[Log[2,#]],And@@Cases[FactorInteger[#],{p_,_}:>IntegerQ[Log[2,PrimePi[p]]]]]&]