cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A324956 Triangle of coefficients T(n,k) of y^n in Product_{k=0..n-2} (n + (n + k)*y + n*y^2), as read by rows of terms k = 0..2*n-2, for n >= 1.

Original entry on oeis.org

1, 2, 2, 2, 9, 21, 30, 21, 9, 64, 240, 488, 600, 488, 240, 64, 625, 3250, 8775, 15080, 17980, 15080, 8775, 3250, 625, 7776, 51840, 176040, 387360, 606384, 701280, 606384, 387360, 176040, 51840, 7776, 117649, 957999, 3935239, 10557540, 20437361, 29924601, 33904822, 29924601, 20437361, 10557540, 3935239, 957999, 117649, 2097152, 20185088, 97484800, 308768768, 711782400, 1258039552, 1753753728, 1956209024, 1753753728, 1258039552, 711782400, 308768768, 97484800, 20185088, 2097152
Offset: 1

Views

Author

Paul D. Hanna, Mar 21 2019

Keywords

Examples

			E.g.f.: A(x,y) = Sum_{n>=0} x^n/n! * Sum_{k=0..2*n-2} T(n,k)*y^k starts
A(x) = x + (2*y^2 + 2*y + 2)*x^2/2! + (9*y^4 + 21*y^3 + 30*y^2 + 21*y + 9)*x^3/3! + (64*y^6 + 240*y^5 + 488*y^4 + 600*y^3 + 488*y^2 + 240*y + 64)*x^4/4! + (625*y^8 + 3250*y^7 + 8775*y^6 + 15080*y^5 + 17980*y^4 + 15080*y^3 + 8775*y^2 + 3250*y + 625)*x^5/5! + (7776*y^10 + 51840*y^9 + 176040*y^8 + 387360*y^7 + 606384*y^6 + 701280*y^5 + 606384*y^4 + 387360*y^3 + 176040*y^2 + 51840*y + 7776)*x^6/6! + (117649*y^12 + 957999*y^11 + 3935239*y^10 + 10557540*y^9 + 20437361*y^8 + 29924601*y^7 + 33904822*y^6 + 29924601*y^5 + 20437361*y^4 + 10557540*y^3 + 3935239*y^2 + 957999*y + 117649)*x^7/7! + (2097152*y^14 + 20185088*y^13 + 97484800*y^12 + 308768768*y^11 + 711782400*y^10 + 1258039552*y^9 + 1753753728*y^8 + 1956209024*y^7 + 1753753728*y^6 + 1258039552*y^5 + 711782400*y^4 + 308768768*y^3 + 97484800*y^2 + 20185088*y + 2097152)*x^8/8! + ...
This triangle of coefficients T(n,k) of x^n*y^k/n! in A(x,y) begins:
1;
2, 2, 2;
9, 21, 30, 21, 9;
64, 240, 488, 600, 488, 240, 64;
625, 3250, 8775, 15080, 17980, 15080, 8775, 3250, 625;
7776, 51840, 176040, 387360, 606384, 701280, 606384, 387360, 176040, 51840, 7776;
117649, 957999, 3935239, 10557540, 20437361, 29924601, 33904822, 29924601, 20437361, 10557540, 3935239, 957999, 117649;
2097152, 20185088, 97484800, 308768768, 711782400, 1258039552, 1753753728, 1956209024, 1753753728, 1258039552, 711782400, 308768768, 97484800, 20185088, 2097152; ...
		

Crossrefs

Cf. A324957.
Cf. A249790.

Programs

  • PARI
    {T(n, k) = polcoeff(prod(m=0, n-2, n + (n+m)*y + n*y^2 +y*O(y^k)), k, y)}
    for(n=1, 10, for(k=0, 2*n-2, print1(T(n, k), ", ")); print(""))
    
  • PARI
    {T(n,k) = my(A = serreverse( x*(1 - x*y +x*O(x^n) )^(1/y+1+y)));
    n!*polcoeff(polcoeff(A,n,x),k,y)}
    for(n=1, 10, for(k=0, 2*n-2, print1(T(n, k), ", ")); print(""))

Formula

E.g.f. A(x) = Sum_{n>=1} x^n/n! * Sum_{k=0..2*n-2} T(n,k)*y^k satisfies
(1) A(x,y) = Sum_{n>=1} x^n/n! * Product_{k=0..n-2} (n + (n + k)*y + n*y^2).
(2) A(x,y) = Series_Reversion( x*(1 - x*y)^(1/y+1+y) ).
(3) A(x,y) = x/(1 - y*A(x))^(1/y+1+y).
(4) A(x,y) = x*Sum_{n>=0} A(x,y)^n/n! * Product_{k=0..n-1} (1 + (k+1)*y + y^2).
PARTICULAR ARGUMENTS.
E.g.f. at y = 0: A(x,y=0) = -LambertW(-x) = x*exp(-LambertW(-x)).
E.g.f. at y = 1: A(x,y=1) = x*G(x)^3, where G(x) = 1 + x*G(x)^4 is the g.f. of A002293.
FORMULAS INVOLVING TERMS.
Row sums: Sum_{k=0..2*n-2} T(n,k) = (4*n-2)!/(3*n-1)! for n >= 1.
T(n,0) = T(n,2*n-2) = n^(n-1) for n >= 1.
T(n,n-1) = A324957(n) for n >= 1.
Showing 1-1 of 1 results.