cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A324305 Triangle, read by rows, where the g.f. of row n equals Product_{k=0..n-2} (n + k*y + n*y^2) for n > 1 with a single '1' in row 1.

Original entry on oeis.org

1, 2, 0, 2, 9, 3, 18, 3, 9, 64, 48, 200, 96, 200, 48, 64, 625, 750, 2775, 2280, 4300, 2280, 2775, 750, 625, 7776, 12960, 46440, 53640, 100584, 81360, 100584, 53640, 46440, 12960, 7776, 117649, 252105, 909979, 1337700, 2594501, 2753415, 3604342, 2753415, 2594501, 1337700, 909979, 252105, 117649, 2097152, 5505024, 20414464, 36040704, 73543680, 94730496, 133244544, 128389632, 133244544, 94730496, 73543680, 36040704, 20414464, 5505024, 2097152
Offset: 1

Views

Author

Paul D. Hanna, Feb 28 2019

Keywords

Examples

			E.g.f.: A(x,y) = Sum_{n>=1} x^n/n! * Product_{k=0..n-2} (n + k*y + n*y^2) and satisfies A(x,y) = x/(1 - y*A(x,y))^(1/y + y).
Explicitly,
A(x,y) = x + (2*y^2 + 2)*x^2/2! + (9*y^4 + 3*y^3 + 18*y^2 + 3*y + 9)*x^3/3! + (64*y^6 + 48*y^5 + 200*y^4 + 96*y^3 + 200*y^2 + 48*y + 64)*x^4/4! + (625*y^8 + 750*y^7 + 2775*y^6 + 2280*y^5 + 4300*y^4 + 2280*y^3 + 2775*y^2 + 750*y + 625)*x^5/5! + (7776*y^10 + 12960*y^9 + 46440*y^8 + 53640*y^7 + 100584*y^6 + 81360*y^5 + 100584*y^4 + 53640*y^3 + 46440*y^2 + 12960*y + 7776)*x^6/6! + (117649*y^12 + 252105*y^11 + 909979*y^10 + 1337700*y^9 + 2594501*y^8 + 2753415*y^7 + 3604342*y^6 + 2753415*y^5 + 2594501*y^4 + 1337700*y^3 + 909979*y^2 + 252105*y + 117649)*x^7/7! + ...
Setting y = 1 yields an o.g.f. of A006013:
A(x,y=1) = x + 2*x^2 + 7*x^3 + 30*x^4 + 143*x^5 + 728*x^6 + 3876*x^7 + 21318*x^8 + 120175*x^9 + ... + binomial(3*n-2,n-1)/n * x^n + ...
TRIANGLE.
This triangle of coefficients in Product_{k=0..n-2} (n + k*y + n*y^2), n >= 1, begins
1;
2, 0, 2;
9, 3, 18, 3, 9;
64, 48, 200, 96, 200, 48, 64;
625, 750, 2775, 2280, 4300, 2280, 2775, 750, 625;
7776, 12960, 46440, 53640, 100584, 81360, 100584, 53640, 46440, 12960, 7776;
117649, 252105, 909979, 1337700, 2594501, 2753415, 3604342, 2753415, 2594501, 1337700, 909979, 252105, 117649;
2097152, 5505024, 20414464, 36040704, 73543680, 94730496, 133244544, 128389632, 133244544, 94730496, 73543680, 36040704, 20414464, 5505024, 2097152; ...
RELATED SERIES.
The e.g.f. may be defined by A(x,y) = Series_Reversion( x/G(x,y) )
where G(x,y) is the e.g.f. of A201949 and equals
G(x,y) = Sum_{n>=0} x^n/n! * Product_{k=0..n-1} (1 + k*y + y^2)
so that
G(x,y) = 1 + (1 + y^2)*x + (1 + y + 2*y^2 + y^3 + y^4)*x^2/2! + (1 + 3*y + 5*y^2 + 6*y^3 + 5*y^4 + 3*y^5 + y^6)*x^3/3! + (1 + 6*y + 15*y^2 + 24*y^3 + 28*y^4 + 24*y^5 + 15*y^6 + 6*y^7 + y^8)*x^4/4! + (1 + 10*y + 40*y^2 + 90*y^3 + 139*y^4 + 160*y^5 + 139*y^6 + 90*y^7 + 40*y^8 + 10*y^9 + y^10)*x^5/5! + ...
and G(x,y) = x / Series_Reversion( A(x,y) ).
RELATED TRIANGLE.
Triangle A201949 of coefficients in G(x,y) such that A(x/G(x,y),y) = x begins
1;
1, 0, 1;
1, 1, 2, 1, 1;
1, 3, 5, 6, 5, 3, 1;
1, 6, 15, 24, 28, 24, 15, 6, 1;
1, 10, 40, 90, 139, 160, 139, 90, 40, 10, 1;
1, 15, 91, 300, 629, 945, 1078, 945, 629, 300, 91, 15, 1; ...
where the g.f. of row n is Product_{k=0..n-1} (1 + k*y + y^2) for n >= 0.
		

Crossrefs

Programs

  • PARI
    {T(n, k)=polcoeff(prod(j=0, n-2,  n + j*y + n*y^2), k, y)}
    {for(n=1, 10, for(k=0, 2*n-2, print1(T(n, k), ", ")); print(""))}
    
  • PARI
    /* A(x,y) = Series_Reversion(x/G(x,y)) where G(x,y) = e.g.f. A201949 */
    {T(n,k) = my(G=1,A=x);
    G = sum(m=0,n, x^m/m! * prod(j=0,m-1, 1 + j*y + y^2) +x*O(x^n));
    A = serreverse(x/G);
    n!*polcoeff(polcoeff(A,n,x),k,y)}
    {for(n=1, 10, for(k=0, 2*n-2, print1(T(n, k), ", ")); print(""))}

Formula

GENERATING FUNCTIONS.
E.g.f.: A(x,y) = x/(1 - y*A(x,y))^(1/y + y).
E.g.f.: A(x,y) = Series_Reversion( x*(1 - x*y)^(1/y + y) ), wrt x.
E.g.f.: A(x,y) = Sum_{n>=1} x^n/n! * Product_{k=0..n-2} (n + k*y + n*y^2)
E.g.f.: A(x,y) = Series_Reversion( x/G(x,y) ) such that A(x/G(x,y),y) = x, where G(x,y) = Sum_{n>=0} x^n/n! * Product_{k=0..n-1} (1 + k*y + y^2) is the e.g.f. of A201949.
PARTICULAR ARGUMENTS.
E.g.f. at y = 0: A(x,y=0) = -LambertW(-x) = x*exp(-LambertW(-x)).
E.g.f. at y = 1: A(x,y=1) = x*G(x)^2, where G = 1 + x*G(x)^3 is the g.f. of A001764.
FORMULAS INVOLVING TERMS.
Row sums: Sum_{k=0..2*n-2} T(n,k) = (3*n-2)!/(2*n-1)! for n >= 1.
T(n,0) = T(n,2*n-2) = n^(n-1) for n >= 1.
T(n,n-1) = A324304(n) for n >= 1.

A324960 Triangle of coefficients T(n,k) of y^k in Product_{k=0..n-1} (1 + (k+2)*y + y^2), read by rows of terms k = 0..2*n, for n >= 0.

Original entry on oeis.org

1, 1, 2, 1, 1, 5, 8, 5, 1, 1, 9, 29, 42, 29, 9, 1, 1, 14, 75, 196, 268, 196, 75, 14, 1, 1, 20, 160, 660, 1519, 2000, 1519, 660, 160, 20, 1, 1, 27, 301, 1800, 6299, 13293, 17038, 13293, 6299, 1800, 301, 27, 1, 1, 35, 518, 4235, 21000, 65485, 129681, 162890, 129681, 65485, 21000, 4235, 518, 35, 1, 1, 44, 834, 8932, 59633, 258720, 740046, 1395504, 1725372, 1395504, 740046, 258720, 59633, 8932, 834, 44, 1, 1, 54, 1275, 17316, 149787, 863982, 3386879, 9054684, 16420458, 20044728, 16420458, 9054684, 3386879, 863982, 149787, 17316, 1275, 54, 1
Offset: 0

Views

Author

Paul D. Hanna, Mar 20 2019

Keywords

Examples

			E.g.f.: A(x,y) = Sum_{n>=0} x^n/n! * Sum_{k=0..2*n} T(n,k)*y^k starts
A(x,y) = 1 + (y^2 + 2*y + 1)*x + (y^4 + 5*y^3 + 8*y^2 + 5*y + 1)*x^2/2! + (y^6 + 9*y^5 + 29*y^4 + 42*y^3 + 29*y^2 + 9*y + 1)*x^3/3! + (y^8 + 14*y^7 + 75*y^6 + 196*y^5 + 268*y^4 + 196*y^3 + 75*y^2 + 14*y + 1)*x^4/4! + (y^10 + 20*y^9 + 160*y^8 + 660*y^7 + 1519*y^6 + 2000*y^5 + 1519*y^4 + 660*y^3 + 160*y^2 + 20*y + 1)*x^5/5! + (y^12 + 27*y^11 + 301*y^10 + 1800*y^9 + 6299*y^8 + 13293*y^7 + 17038*y^6 + 13293*y^5 + 6299*y^4 + 1800*y^3 + 301*y^2 + 27*y + 1)*x^6/6! + (y^14 + 35*y^13 + 518*y^12 + 4235*y^11 + 21000*y^10 + 65485*y^9 + 129681*y^8 + 162890*y^7 + 129681*y^6 + 65485*y^5 + 21000*y^4 + 4235*y^3 + 518*y^2 + 35*y + 1)*x^7/7! + (y^16 + 44*y^15 + 834*y^14 + 8932*y^13 + 59633*y^12 + 258720*y^11 + 740046*y^10 + 1395504*y^9 + 1725372*y^8 + 1395504*y^7 + 740046*y^6 + 258720*y^5 + 59633*y^4 + 8932*y^3 + 834*y^2 + 44*y + 1)*x^8/8! + ...
This triangle of coefficients T(n,k) of x^n*y^k/n! in A(x,y) begins:
  1;
  1, 2, 1;
  1, 5, 8, 5, 1;
  1, 9, 29, 42, 29, 9, 1;
  1, 14, 75, 196, 268, 196, 75, 14, 1;
  1, 20, 160, 660, 1519, 2000, 1519, 660, 160, 20, 1;
  1, 27, 301, 1800, 6299, 13293, 17038, 13293, 6299, 1800, 301, 27, 1;
  1, 35, 518, 4235, 21000, 65485, 129681, 162890, 129681, 65485, 21000, 4235, 518, 35, 1;
  1, 44, 834, 8932, 59633, 258720, 740046, 1395504, 1725372, 1395504, 740046, 258720, 59633, 8932, 834, 44, 1;
  1, 54, 1275, 17316, 149787, 863982, 3386879, 9054684, 16420458, 20044728, 16420458, 9054684, 3386879, 863982, 149787, 17316, 1275, 54, 1; ...
		

Crossrefs

Programs

  • PARI
    {T(n, k) = polcoeff( prod(m=0, n-1, 1 + (m+2)*y + y^2 +x*O(x^k)), k, y)}
    for(n=0, 10, for(k=0, 2*n, print1(T(n, k), ", ")); print(""))
    
  • PARI
    {T(n, k) = n!*polcoeff(polcoeff( 1/(1 - x*y +x*O(x^n) )^((1+y)^2/y),n, x), k, y)}
    for(n=0, 10, for(k=0, 2*n, print1(T(n, k), ", ")); print(""))

Formula

E.g.f.: A(x,y) = Sum_{n>=0} x^n/n! * Sum_{k=0..2*n} T(n,k)*y^k satisfies
(1) A(x,y) = Sum_{n>=0} x^n/n! * Product_{k=0..n-1} (1 + (k+2)*y + y^2).
(2) A(x,y) = 1/(1 - x*y)^((1+y)^2/y).
(3) x = Sum_{n>=1} (x/A(x,y))^n/n! * Product_{k=0..n-2} (n + (2*n + k)*y + n*y^2).
Row sums are (n+3)!/3! for row n >= 0.

A324959 a(n) is the coefficient of y^(n-1) in Product_{k=0..n-2} (n + (2*n + k)*y + n*y^2), for n >= 1.

Original entry on oeis.org

1, 4, 60, 1584, 60460, 3029040, 188149822, 13957194496, 1204226253180, 118497226636800, 13098496404605964, 1607024046808249344, 216700840893719564902, 31857524157092264001280, 5071166437655033657264250, 868987068436739105218560000, 159492062728455524910446791332, 31215865935497559008870102593536, 6489956761227888786183691062551704, 1428394947783425181327275654594560000
Offset: 1

Views

Author

Paul D. Hanna, Mar 20 2019

Keywords

Comments

a(n) = A324958(n,n-1) for n >= 1.

Crossrefs

Cf. A324958.

Programs

  • Mathematica
    Table[If[n==1, 1, Coefficient[Expand[Product[(n + (2*n+k)*y + n*y^2), {k, 0, n-2}]], y^(n-1)]], {n, 1, 20}] (* Vaclav Kotesovec, Oct 30 2019 *)
  • PARI
    {a(n) = polcoeff( prod(k=0, n-2, n + (2*n+k)*y + n*y^2 +y*O(y^n)), n-1, y)}
    for(n=1, 25, print1(a(n), ", "))

Formula

a(n) ~ n! * c * 5^(5*n) / (2^(8*n) * n^2), where c = 1/(5*Pi*sqrt(10*log(5/4))) = 0.04261749831824651172873387091554100360007169830546206828545398795767677148... - Vaclav Kotesovec, Oct 30 2019, updated Mar 17 2024
Showing 1-3 of 3 results.