cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324971 Number of rooted identity trees with n vertices whose non-leaf terminal subtrees are not all different.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 4, 12, 31, 79, 192, 459, 1082, 2537, 5922, 13816, 32222, 75254, 176034, 412667, 969531, 2283278
Offset: 1

Views

Author

Gus Wiseman, Mar 21 2019

Keywords

Comments

A rooted identity tree is an unlabeled rooted tree with no repeated branches directly under the same root.

Examples

			The a(6) = 1 through a(8) = 12 trees:
  ((o)((o)))  ((o)(o(o)))   (o(o)(o(o)))
              (o(o)((o)))   (((o))(o(o)))
              (((o)((o))))  (((o)(o(o))))
              ((o)(((o))))  ((o)((o(o))))
                            ((o)(o((o))))
                            ((o(o)((o))))
                            (o((o)((o))))
                            (o(o)(((o))))
                            ((((o)((o)))))
                            (((o))(((o))))
                            (((o)(((o)))))
                            ((o)((((o)))))
		

Crossrefs

The Matula-Goebel numbers of these trees are given by A324970.

Programs

  • Mathematica
    rits[n_]:=Join@@Table[Select[Union[Sort/@Tuples[rits/@ptn]],UnsameQ@@#&],{ptn,IntegerPartitions[n-1]}];
    Table[Length[Select[rits[n],!UnsameQ@@Cases[#,{},{0,Infinity}]&]],{n,10}]