A324975 Rank of the n-th Carmichael number.
6, 10, 12, 8, 8, 10, 6, 6, 8, 18, 52, 12, 12, 18, 98, 164, 22, 6, 50, 8, 96, 34, 52, 46, 52, 6, 6, 156, 20, 46, 36, 32, 16, 8, 304, 36, 20, 36, 10, 316, 76, 468, 8, 30, 24, 1580, 84, 54, 8, 12, 250, 28, 92, 36, 20, 418, 456, 928, 188, 16, 8, 276, 284, 56, 144
Offset: 1
Keywords
Examples
If m = A002997(1) = 561 = 3*11*17, then p = 17, so a(1) = 2+2*((561/17)-1)/(17-1) = 6.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Bernd C. Kellner and Jonathan Sondow, On Carmichael and polygonal numbers, Bernoulli polynomials, and sums of base-p digits, Integers 21 (2021), #A52, 21 pp.; arXiv:1902.10672 [math.NT], 2019.
- Bernd C. Kellner, On primary Carmichael numbers, Integers 22 (2022), #A38, 39 pp.; arXiv:1902.11283 [math.NT], 2019.
- Wikipedia, Polygonal number
Crossrefs
Programs
-
Mathematica
T = Cases[Range[1, 10000000, 2], n_ /; Mod[n, CarmichaelLambda[n]] == 1 && ! PrimeQ[n]]; GPF[n_] := Last[Select[Divisors[n], PrimeQ]]; Table[2 + 2*(T[[i]]/GPF[T[[i]]] - 1)/(GPF[T[[i]]] - 1), {i, Length[T]}]
Comments