A324992 Decimal expansion of zeta'(-1, 1/2).
0, 5, 3, 8, 2, 9, 4, 3, 9, 3, 2, 6, 8, 9, 4, 4, 1, 0, 0, 4, 7, 9, 0, 8, 4, 9, 1, 7, 2, 7, 2, 9, 9, 6, 3, 1, 0, 4, 5, 5, 3, 9, 0, 1, 7, 9, 0, 2, 5, 9, 0, 2, 5, 6, 2, 4, 4, 8, 9, 9, 4, 8, 6, 1, 1, 6, 4, 5, 5, 1, 1, 5, 5, 8, 4, 5, 5, 1, 3, 0, 6, 5, 6, 2, 8, 5, 1, 5, 7, 8, 2, 0, 8, 0, 7, 0, 2, 6, 5, 7, 8, 8, 2, 7, 1, 8
Offset: 0
Examples
0.053829439326894410047908491727299631045539017902590256244899486116455...
Links
- J. Miller and V. Adamchik, Derivatives of the Hurwitz Zeta Function for Rational Arguments, Journal of Computational and Applied Mathematics 100 (1998) 201-206. [contains a large number of typos]
- Eric Weisstein's World of Mathematics, Hurwitz Zeta Function, formula 22.
Programs
-
Maple
evalf(Zeta(1,-1,1/2), 120); evalf(-log(2)/24 - Zeta(1,-1)/2, 120);
-
Mathematica
RealDigits[Derivative[1, 0][Zeta][-1, 1/2], 10, 120][[1]] N[With[{k=1}, -BernoulliB[2*k] * Log[2] / 4^k / k - (2^(2*k - 1) - 1) * Zeta'[1 - 2*k] / 2^(2*k - 1)], 120]
-
PARI
zetahurwitz'(-1, 1/2) \\ Michel Marcus, Mar 24 2019