cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A306651 a(n) = Product_{k=1..n} BarnesG(3*k).

Original entry on oeis.org

1, 288, 36118462464000, 240498631970530185123135341199360000000000
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 03 2019

Keywords

Comments

Next term is too long to be included.

Crossrefs

Programs

  • Mathematica
    Table[Product[BarnesG[3*k], {k, 1, n}], {n, 1, 6}]
    Round[Table[3^(15*n^2/4 - 7*n/12 - 1/4) * E^(Pi/(18*Sqrt[3]) - PolyGamma[1, 1/3]/(12*Sqrt[3]*Pi) - Zeta[3]/(3*Pi^2) + 1/6 + 3*n*(n + 1)*(2*n + 1)/8 + 3*PolyGamma[-3, n + 1] - (3/2)*Derivative[1, 0][Zeta][-2, n] + (1/6)*Derivative[1, 0][Zeta][-2, 3*n] + (7/2)*Derivative[1, 0][Zeta][-1, n + 1/3] + (5/2)*Derivative[1, 0][Zeta][-1, n + 2/3]) * BarnesG[3*n]^(n + 1) * BarnesG[n + 1/3] * Gamma[n]^(5*n/2 - 13/6) / (BarnesG[4/3] * BarnesG[n]^(5/2) * Gamma[n + 1/3]^(n - 1) * Gamma[3*n]^(3*n*(n + 1)/2 - 2/3) * Glaisher^(3*n + 5) * (2*Pi)^(3*(n + 1)^2/4) * n^(3*n^2/2)), {n, 1, 6}]] (* Vaclav Kotesovec, Mar 04 2019 *)

Formula

a(n) ~ (2*Pi)^(3*n^2/4 + n/4 + 1/6) * 3^(3*n^3/2 + 3*n^2/4 - n/3 - 13/72) * n^(3*n^3/2 + 3*n^2/4 - n/3 - 5/72) / (Gamma(1/3)^(1/3) * A^(n + 1/6) * exp(11*n^3/4 + 9*n^2/8 - 5*n/12 - Zeta(3)/(24*Pi^2) - 1/72)), where A is the Glaisher-Kinkelin constant A074962.
a(n) = Product_{k=1..n} (exp(-8*Zeta'(-1)) * 3^(9*k^2/2 - 3*k + 5/12) * (2*Pi)^(1 - 3*k) * Gamma(k)^2 * Gamma(k + 1/3) * (BarnesG(k) * BarnesG(k + 1/3) * BarnesG(k + 2/3))^3).
a(n) = a(n-1)*A296608(n). - R. J. Mathar, Jul 24 2025

A324994 Decimal expansion of zeta'(-1, 2/3) (negated).

Original entry on oeis.org

0, 1, 3, 9, 6, 2, 4, 4, 7, 3, 1, 2, 3, 7, 0, 7, 4, 3, 8, 8, 0, 3, 4, 4, 6, 0, 4, 4, 4, 1, 4, 0, 9, 2, 6, 3, 9, 8, 8, 5, 7, 6, 6, 5, 9, 9, 8, 8, 1, 2, 4, 3, 1, 7, 1, 8, 4, 8, 4, 1, 3, 9, 7, 5, 7, 4, 9, 0, 3, 3, 7, 2, 9, 8, 4, 8, 3, 3, 2, 6, 2, 8, 5, 6, 2, 5, 6, 4, 5, 3, 5, 5, 4, 2, 4, 9, 7, 0, 3, 6, 2, 1, 5, 1, 0, 6
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 23 2019

Keywords

Examples

			-0.01396244731237074388034460444140926398857665998812431718484139757490...
		

Crossrefs

Programs

  • Maple
    evalf(Zeta(1,-1,2/3), 120);
    evalf(Pi/(18*sqrt(3)) - log(3)/72 - Psi(1, 1/3) / (12*sqrt(3)*Pi) - Zeta(1,-1)/3, 120);
  • Mathematica
    RealDigits[Derivative[1, 0][Zeta][-1, 2/3], 10, 120][[1]]
    N[With[{k=1}, Sqrt[3] * (9^k - 1) * BernoulliB[2*k] * Pi / (9^k * 8*k) - 3*BernoulliB[2*k] * Log[3] / 9^k / 4 / k + (-1)^k * PolyGamma[2*k-1,1/3] / 2 / Sqrt[3] / (6*Pi)^(2*k-1) - (9^k-3)*Zeta'[-2*k+1]/2/9^k], 120]
  • PARI
    zetahurwitz'(-1, 2/3) \\ Michel Marcus, Mar 24 2019

Formula

Equals Pi/(18*sqrt(3)) - log(3)/72 - PolyGamma(1, 1/3) / (12*sqrt(3)*Pi) - Zeta'(-1)/3.
A324993 + A324994 = -log(3)/36 - 2*Zeta'(-1)/3.
Showing 1-2 of 2 results.