A325000 Array read by descending antidiagonals: T(n,k) is the number of unoriented colorings of the facets (or vertices) of a regular n-dimensional simplex using up to k colors.
1, 3, 1, 6, 4, 1, 10, 10, 5, 1, 15, 20, 15, 6, 1, 21, 35, 35, 21, 7, 1, 28, 56, 70, 56, 28, 8, 1, 36, 84, 126, 126, 84, 36, 9, 1, 45, 120, 210, 252, 210, 120, 45, 10, 1, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1, 66, 220, 495, 792, 924, 792, 495, 220, 66, 12, 1
Offset: 1
Examples
The array begins with T(1,1): 1 3 6 10 15 21 28 36 45 55 66 78 91 105 ... 1 4 10 20 35 56 84 120 165 220 286 364 455 560 ... 1 5 15 35 70 126 210 330 495 715 1001 1365 1820 2380 ... 1 6 21 56 126 252 462 792 1287 2002 3003 4368 6188 8568 ... 1 7 28 84 210 462 924 1716 3003 5005 8008 12376 18564 27132 ... 1 8 36 120 330 792 1716 3432 6435 11440 19448 31824 50388 77520 ... 1 9 45 165 495 1287 3003 6435 12870 24310 43758 75582 125970 203490 ... 1 10 55 220 715 2002 5005 11440 24310 48620 92378 167960 293930 497420 ... ... For T(1,2) = 3, the two achiral colorings use just one of the two colors for both vertices; the chiral pair uses two colors. For T(2,2)=4, the triangle may have 0, 1, 2, or 3 edges of one color.
Links
- Robert A. Russell, Table of n, a(n) for n = 1..1275
Crossrefs
Unoriented: A007318(n,k-1) (exactly k colors), A327084 (edges, ridges), A337884 (faces, peaks), A325005 (orthotope facets, orthoplex vertices), A325013 (orthoplex facets, orthotope vertices).
Chiral: A327085 (edges, ridges), A337885 (faces, peaks), A325006 (orthotope facets, orthoplex vertices), A325014 (orthoplex facets, orthotope vertices).
Cf. A104712 (same sequence for a triangle; same sequence apart from offset).
Programs
-
Mathematica
Table[Binomial[d+1,n+1], {d,1,15}, {n,1,d}] // Flatten
Formula
T(n,k) = binomial(n+k,n+1) = A007318(n+k,n+1).
T(n,k) = Sum_{j=1..n+1} A007318(n,j-1) * binomial(k,j).
T(n,k) = A324999(n,k) + T(n,k-n) = (A324999(n,k) - A325001(n,k)) / 2 = T(n,k-n) + A325001(n,k). - Robert A. Russell, Sep 28 2020
G.f. for row n: x / (1-x)^(n+2).
Linear recurrence for row n: T(n,k) = Sum_{j=1..n+2} -binomial(j-n-3,j) * T(n,k-j).
G.f. for column k: (1 - (1-x)^k) / (x * (1-x)^k) - k.
T(n,k-n) = A324999(n,k) - T(n,k) = (A324999(n,k) - A325001(n,k)) / 2 = T(n,k) - A325001(n,k). - Robert A. Russell, Oct 10 2020
Comments