cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325001 Array read by descending antidiagonals: A(n,k) is the number of achiral colorings of the facets (or vertices) of a regular n-dimensional simplex using up to k colors.

Original entry on oeis.org

1, 2, 1, 3, 4, 1, 4, 9, 5, 1, 5, 16, 15, 6, 1, 6, 25, 34, 21, 7, 1, 7, 36, 65, 56, 28, 8, 1, 8, 49, 111, 125, 84, 36, 9, 1, 9, 64, 175, 246, 210, 120, 45, 10, 1, 10, 81, 260, 441, 461, 330, 165, 55, 11, 1, 11, 100, 369, 736, 917, 792, 495, 220, 66, 12, 1
Offset: 1

Views

Author

Robert A. Russell, Mar 23 2019

Keywords

Comments

For n=1, the figure is a line segment with two vertices. For n=2, the figure is a triangle with three edges. For n=3, the figure is a tetrahedron with four triangular faces. The Schläfli symbol, {3,...,3}, of the regular n-dimensional simplex consists of n-1 threes. Each of its n+1 facets is a regular (n-1)-dimensional simplex. An achiral coloring is the same as its reflection.

Examples

			The array begins with A(1,1):
  1  2  3   4   5    6    7     8     9    10    11     12     13 ...
  1  4  9  16  25   36   49    64    81   100   121    144    169 ...
  1  5 15  34  65  111  175   260   369   505   671    870   1105 ...
  1  6 21  56 125  246  441   736  1161  1750  2541   3576   4901 ...
  1  7 28  84 210  461  917  1688  2919  4795  7546  11452  16848 ...
  1  8 36 120 330  792 1715  3424  6399 11320 19118  31032  48672 ...
  1  9 45 165 495 1287 3003  6434 12861 24265 43593  75087 124683 ...
  1 10 55 220 715 2002 5005 11440 24309 48610 92323 167740 293215 ...
  ...
For A(2,2)=4, the triangle may have 0, 1, 2, or 3 edges of one color.
		

Crossrefs

Cf. A324999 (oriented), A325000 (unoriented), A325000(n,k-n) (chiral), A325003 (exactly k colors), A327086 (edges, ridges), A337886 (faces, peaks), A325007 (orthotope facets, orthoplex vertices), A325015 (orthoplex facets, orthotope vertices).
Rows 1-4 are A000027, A000290, A006003, A132366(n-1).
Column 2 is A162880.

Programs

  • Mathematica
    Table[Binomial[d+1,n+1] - Binomial[d+1-n,n+1], {d,1,15}, {n,1,d}] // Flatten

Formula

A(n,k) = binomial(n+k,n+1) - binomial(k,n+1).
A(n,k) = Sum_{j=1..n} A325003(n,j) * binomial(k,j).
A(n,k) = 2*A325000(n,k) - A324999(n,k) = A324999(n,k) - 2*A325000(n,k-n) = A325000(n,k) - A325000(n,k-n).
G.f. for row n: (x - x^(n+1)) / (1-x)^(n+2).
Linear recurrence for row n: A(n,k) = Sum_{j=1..n+1} -binomial(j-n-2,j) * A(n,k-j).
G.f. for column k: (1 - (1-x^2)^k) / (x*(1-x)^k).