A325001 Array read by descending antidiagonals: A(n,k) is the number of achiral colorings of the facets (or vertices) of a regular n-dimensional simplex using up to k colors.
1, 2, 1, 3, 4, 1, 4, 9, 5, 1, 5, 16, 15, 6, 1, 6, 25, 34, 21, 7, 1, 7, 36, 65, 56, 28, 8, 1, 8, 49, 111, 125, 84, 36, 9, 1, 9, 64, 175, 246, 210, 120, 45, 10, 1, 10, 81, 260, 441, 461, 330, 165, 55, 11, 1, 11, 100, 369, 736, 917, 792, 495, 220, 66, 12, 1
Offset: 1
Examples
The array begins with A(1,1): 1 2 3 4 5 6 7 8 9 10 11 12 13 ... 1 4 9 16 25 36 49 64 81 100 121 144 169 ... 1 5 15 34 65 111 175 260 369 505 671 870 1105 ... 1 6 21 56 125 246 441 736 1161 1750 2541 3576 4901 ... 1 7 28 84 210 461 917 1688 2919 4795 7546 11452 16848 ... 1 8 36 120 330 792 1715 3424 6399 11320 19118 31032 48672 ... 1 9 45 165 495 1287 3003 6434 12861 24265 43593 75087 124683 ... 1 10 55 220 715 2002 5005 11440 24309 48610 92323 167740 293215 ... ... For A(2,2)=4, the triangle may have 0, 1, 2, or 3 edges of one color.
Links
- Robert A. Russell, Table of n, a(n) for n = 1..1275
Crossrefs
Programs
-
Mathematica
Table[Binomial[d+1,n+1] - Binomial[d+1-n,n+1], {d,1,15}, {n,1,d}] // Flatten
Formula
A(n,k) = binomial(n+k,n+1) - binomial(k,n+1).
A(n,k) = Sum_{j=1..n} A325003(n,j) * binomial(k,j).
A(n,k) = 2*A325000(n,k) - A324999(n,k) = A324999(n,k) - 2*A325000(n,k-n) = A325000(n,k) - A325000(n,k-n).
G.f. for row n: (x - x^(n+1)) / (1-x)^(n+2).
Linear recurrence for row n: A(n,k) = Sum_{j=1..n+1} -binomial(j-n-2,j) * A(n,k-j).
G.f. for column k: (1 - (1-x^2)^k) / (x*(1-x)^k).
Comments