A325002 Triangle read by rows: T(n,k) is the number of oriented colorings of the facets (or vertices) of a regular n-dimensional simplex using exactly k colors.
1, 2, 1, 2, 2, 1, 3, 3, 2, 1, 4, 6, 4, 2, 1, 5, 10, 10, 5, 2, 1, 6, 15, 20, 15, 6, 2, 1, 7, 21, 35, 35, 21, 7, 2, 1, 8, 28, 56, 70, 56, 28, 8, 2, 1, 9, 36, 84, 126, 126, 84, 36, 9, 2, 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 2, 1, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 2
Offset: 1
Examples
Triangle begins with T(1,1): 1 2 1 2 2 1 3 3 2 1 4 6 4 2 1 5 10 10 5 2 1 6 15 20 15 6 2 1 7 21 35 35 21 7 2 1 8 28 56 70 56 28 8 2 1 9 36 84 126 126 84 36 9 2 1 10 45 120 210 252 210 120 45 10 2 1 11 55 165 330 462 462 330 165 55 11 2 1 12 66 220 495 792 924 792 495 220 66 12 2 1 13 78 286 715 1287 1716 1716 1287 715 286 78 13 2 1 14 91 364 1001 2002 3003 3432 3003 2002 1001 364 91 14 2 1 15 105 455 1365 3003 5005 6435 6435 5005 3003 1365 455 105 15 2 For T(3,2)=3, the tetrahedron may have one, two, or three faces of one color.
Links
- Robert A. Russell, Table of n, a(n) for n = 1..1325
Crossrefs
Programs
-
Mathematica
Table[Binomial[n,k-1] + Boole[k==n+1], {n,1,15}, {k,1,n+1}] \\ Flatten
Comments