A325008 Triangle read by rows: T(n,k) is the number of oriented colorings of the facets of a regular n-dimensional orthotope using exactly k colors. Row n has 2n columns.
1, 2, 1, 4, 9, 6, 1, 8, 30, 68, 75, 30, 1, 13, 84, 312, 735, 1020, 735, 210, 1, 19, 192, 1122, 4155, 10242, 16380, 15960, 8505, 1890, 1, 26, 381, 3322, 18285, 67679, 173936, 308056, 363825, 270900, 114345, 20790, 1, 34, 687, 8484, 66765, 352359, 1305612, 3479268, 6668865, 9035460, 8378370, 5031180, 1756755, 270270
Offset: 1
Examples
Triangle begins with T(1,1): 1 2 1 4 9 6 1 8 30 68 75 30 1 13 84 312 735 1020 735 210 1 19 192 1122 4155 10242 16380 15960 8505 1890 1 26 381 3322 18285 67679 173936 308056 363825 270900 114345 20790 For T(2,2)=4, there are two squares with just one edge for one color, one square with opposite edges the same color, and one square with opposite edges different colors.
Links
- Robert A. Russell, Table of n, a(n) for n = 1..132
Crossrefs
Programs
-
Mathematica
Table[Sum[Binomial[-j-2,k-j-1] Binomial[n + Binomial[j+2,2]-1, n], {j,0,k-1}] + Sum[Binomial[j-k-1,j] Binomial[Binomial[k-j,2],n],{j,0,k-2}], {n,1,10},{k,1,2n}] // Flatten
Comments