A325009 Triangle read by rows: T(n,k) is the number of unoriented colorings of the facets of a regular n-dimensional orthotope using exactly k colors. Row n has 2n columns.
1, 1, 1, 4, 6, 3, 1, 8, 29, 52, 45, 15, 1, 13, 84, 297, 600, 690, 420, 105, 1, 19, 192, 1116, 3933, 8661, 11970, 10080, 4725, 945, 1, 26, 381, 3321, 18080, 63919, 150332, 236978, 247275, 163800, 62370, 10395, 1, 34, 687, 8484, 66645, 346644, 1231857, 3052008, 5316885, 6483330, 5415795, 2952180, 945945, 135135
Offset: 1
Examples
The triangle begins with T(1,1): 1 1 1 4 6 3 1 8 29 52 45 15 1 13 84 297 600 690 420 105 1 19 192 1116 3933 8661 11970 10080 4725 945 1 26 381 3321 18080 63919 150332 236978 247275 163800 62370 10395 For T(2,2)=4, there are two squares with just one edge for one color, one square with opposite edges the same color, and one square with opposite edges different colors.
Links
- Robert A. Russell, Table of n, a(n) for n = 1..132
Crossrefs
Programs
-
Mathematica
Table[Sum[Binomial[-j-2,k-j-1]Binomial[n+Binomial[j+2,2]-1,n],{j,0,k-1}],{n,1,10},{k,1,2n}] // Flatten
Comments