A325011 Triangle read by rows: T(n,k) is the number of achiral colorings of the facets of a regular n-dimensional orthotope using exactly k colors. Row n has 2n columns.
1, 0, 1, 4, 3, 0, 1, 8, 28, 36, 15, 0, 1, 13, 84, 282, 465, 360, 105, 0, 1, 19, 192, 1110, 3711, 7080, 7560, 4200, 945, 0, 1, 26, 381, 3320, 17875, 60159, 126728, 165900, 130725, 56700, 10395, 0, 1, 34, 687, 8484, 66525, 340929, 1158102, 2624748, 3964905, 3931200, 2453220, 873180, 135135, 0
Offset: 1
Examples
Table begins with T(1,1): 1 0 1 4 3 0 1 8 28 36 15 0 1 13 84 282 465 360 105 0 1 19 192 1110 3711 7080 7560 4200 945 0 1 26 381 3320 17875 60159 126728 165900 130725 56700 10395 0 For T(2,3)=3, each of the three chiral pairs has two opposite edges with the same color.
Links
- Robert A. Russell, Table of n, a(n) for n = 1..132
Crossrefs
Programs
-
Mathematica
Table[Sum[Binomial[-j-2,k-j-1] Binomial[n + Binomial[j+2,2]-1, n], {j,0,k-1}] - Sum[Binomial[j-k-1,j] Binomial[Binomial[k-j,2],n],{j,0,k-2}], {n,1,10},{k,1,2n}] // Flatten
Comments