A325041 Heinz numbers of integer partitions whose product of parts is one greater than their sum.
1, 15, 42, 54, 100, 132, 312, 560, 720, 816, 1824, 3520, 4416, 6272, 8064, 10368, 11136, 16640, 23808, 38400, 56832, 78848, 87040, 101376, 125952, 264192, 389120, 577536, 745472, 958464, 1302528, 1720320, 1884160, 1982464, 2211840, 2899968, 5996544
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 1: {} 15: {2,3} 42: {1,2,4} 54: {1,2,2,2} 100: {1,1,3,3} 132: {1,1,2,5} 312: {1,1,1,2,6} 560: {1,1,1,1,3,4} 720: {1,1,1,1,2,2,3} 816: {1,1,1,1,2,7} 1824: {1,1,1,1,1,2,8} 3520: {1,1,1,1,1,1,3,5} 4416: {1,1,1,1,1,1,2,9} 6272: {1,1,1,1,1,1,1,4,4} 8064: {1,1,1,1,1,1,1,2,2,4} 10368: {1,1,1,1,1,1,1,2,2,2,2} 11136: {1,1,1,1,1,1,1,2,10} 16640: {1,1,1,1,1,1,1,1,3,6} 23808: {1,1,1,1,1,1,1,1,2,11} 38400: {1,1,1,1,1,1,1,1,1,2,3,3}
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Select[Range[10000],Times@@primeMS[#]==Total[primeMS[#]]+1&]
Comments