A325070 Prime numbers congruent to 9 modulo 16 representable by x^2 + 64*y^2.
73, 89, 233, 281, 601, 617, 937, 1033, 1049, 1097, 1193, 1289, 1433, 1481, 1609, 1721, 1753, 1801, 1913, 2089, 2281, 2393, 2441, 2473, 2857, 2969, 3049, 3257, 3449, 3529, 3673, 3833, 4057, 4153, 4201, 4217, 4297, 4409, 4457, 4937, 5081, 5113, 5209, 5689, 5737
Offset: 1
Keywords
Examples
Regarding 4201: - 4201 is a prime number, - 4201 = 262*16 + 9, - 4201 = 51^2 + 64*5^2, - hence 4201 belongs to this sequence.
Links
- David Brink, Five peculiar theorems on simultaneous representation of primes by quadratic forms, Journal of Number Theory 129(2) (2009), 464-468, doi:10.1016/j.jnt.2008.04.007, MR 2473893.
- Rémy Sigrist, PARI program for A325070
- Wikipedia, Kaplansky's theorem on quadratic forms
Programs
-
PARI
See Links section.
Comments